Bài 1: Cho xOy trên tia Ox, lấy 2 điểm A và B. Trên tia Oy lấy điểm C và O sao cho OA = OC, OB = OD.
Bài 2: Cho tam giác ABC có Â = 90*. M là trung điểm của cạnh AB. Nối CM và trên tia đối của tia MC lấy MH = MC. CMR: HB vuông góc BA.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Xét tam giác ABC và ADE có :
góc EAD = góc CAB (đối đỉnh)
CA=EA (gt)
BA=DA (gt)
suy ra tam giác ABC=ADE (c.g.c)
suy ra :DE =BC ( 2 cạnh tương ứng ) ; góc E= góc C ; góc D = góc B (các góc tương ứng )
Mà M; N lần lượt là trung điểm của DE và BC suy ra EN=DN=BM=CM
Xét tam giác ENA và CMA có:
EN = CM ( cmt)
góc E = góc C (cmt)
AE = AC (gt)
suy ra tam giác EAN = CMA (c.g.c) suy ra AM =AN ( 2 cạnh tương ứng )
Xét tam giác NDA và MBA có:
góc D= góc B (cmt)
ND = MB (cmt )
DA = BA (cmt )
suy ra tam giác NDA = MBA (c.g.c)suy ra góc NAD = góc MAB
Ta có góc DAC +MAC+MAB = 180 độ ( vì D nằm trên tia đối của tia AB )
Mà góc NAD = góc MAB suy ra góc DAC+MAC+NAD =180 độ
suy ra 3 điểm M,A,N thẳng hàng (2)
Từ (1) và (2 ) suy ra A là trung điểm của MN
( mình vẽ hình hơi xấu , mong bạn thông cảm . Nếu đúng nhớ kết bạn với mình nhé , mong tin bạn ^-^)
Bài 3:
Xét ΔHMB vuông tại H và ΔKMC vuông tại K có
MB=MC
\(\widehat{HMB}=\widehat{KMC}\)
Do đo: ΔHMB=ΔKMC
Suy ra: BH=CK
Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá
3/ (Bạn tự vẽ hình giùm)
a/ \(\Delta ABC\)và \(\Delta ADC\)có:
\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)
Cạnh AC chung
\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)
=> \(\Delta ABC\)= \(\Delta ADC\)(g. c. g)
=> AD = BC (hai cạnh tương ứng)
và AB = DC (hai cạnh tương ứng)
b/ Ta có AD = BC (cm câu a)
và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)
và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)
=> AN = MC
Chứng minh tương tự, ta cũng có: BM = ND
\(\Delta AMB\)và \(\Delta CND\)có:
BM = ND (cmt)
\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)
AB = CD (\(\Delta ABC\)= \(\Delta ADC\))
=> \(\Delta AMB\)= \(\Delta CND\)(c. g. c)
=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)
và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)= \(\Delta ADC\))
=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)
=> \(\widehat{MAC}=\widehat{ACN}\)(1)
Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)
và AN = MC (cmt) (3)
=> \(\Delta MAC=\Delta NAC\)(g, c. g)
=> AM = CN (hai cạnh tương ứng) (đpcm)
c/ \(\Delta AOB\)và \(\Delta COD\)có:
\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)
AB = CD (cm câu a)
\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)
=> \(\Delta AOB\)= \(\Delta COD\)(g. c. g)
=> OA = OC (hai cạnh tương ứng)
và OB = OD (hai cạnh tương ứng)
d/ \(\Delta ONA\)và \(\Delta MOC\)có:
\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)
OA = OC (O là trung điểm AC)
\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)
=> \(\Delta ONA\)= \(\Delta MOC\)(g. c. g)
=> ON = OM (hai cạnh tương ứng)
=> O là trung điểm MN
=> M, O, N thẳng hàng (đpcm)
1: Xét ΔAOC và ΔBOC
OC chung
\(\widehat{AOC}=\widehat{BOC}\)
OA=OB
Do đó: ΔAOC=ΔBOC
1)Xét ΔAOCvàΔOBC có:
OC:cạnh chung
OB=OA(GT)
gócBOC=gócAOC(vì Oz là p/g của góc xOy)
Do đó Δ AOC= Δ OBC(c.g.c)
2)a)Xét Δ OIB và Δ OIA có:
OI:cạnh chung
OB=OA(GT)
góc BOC= góc AOC(vì Oz là p/g của góc xOy)
Suy ra ΔOIB =Δ OIA(c.g.c)
⇒BI=IA⇒I là trung điểm của AB
b)vì ΔOIB=ΔOIA(câu a) nên góc OIB= góc OIA(2 góc tương ứng)
Mà góc OIB+góc OIA=180 nên góc OIB= góc OIA=180/2=90
⇒OI⊥AB hay OC⊥AB
a) Xét tam giác tam giác ABO và tam giác CDO có:
+ \(\text{OB = OD}\) (gt).
+ \(\text{OA = OC }\)(gt).
+ \(\widehat{AOB}\) = \(\widehat{COD}\) (2 góc đối đỉnh).
=> Tam giác ABO = Tam giác CDO (c - g - c).
b) Xét tứ giác ABCD có:
+ O là trung điểm của AC (do \(\text{OA = OC}\)).
+ O là trung điểm của BD (do \(\text{OB = OD}\)).
=> Tứ giác ABCD là hình bình hành (dhnb).
=> AB // CD (Tính chất hình bình hành).
c) Xét tam giác ABC có:
+ M là trung điểm của AB (gt).
+ O là trung điểm của AC (do \(\text{OA = OC}\)).
=> MO là đường trung bình.
=> MO // BC và MO = \(\dfrac{1}{2}\) BC (Tính chất đường trung bình trong tam giác). (1)
Xét tam giác BDC có:
+ N là trung điểm của CD (gt).
+ O là trung điểm của BD (do \(\text{OB = OD}\)).
=> NO là đường trung bình.
=> NO // BC và NO = \(\dfrac{1}{2}\) BC (Tính chất đường trung bình trong tam giác). (2)
Từ (1) và (2) => 3 điểm M; O; N thẳng hàng và MO = NO (do cùng = \(\dfrac{1}{2}\) BC).
=> O là trung điểm của MN (đpcm).
a) Xét tam giác tam giác ABO và tam giác CDO có:
+ OB = ODOB = OD (gt).
+ OA = OC OA = OC (gt).
+ ˆAOB���^ = ˆCOD���^ (2 góc đối đỉnh).
=> Tam giác ABO = Tam giác CDO (c - g - c).
b) Xét tứ giác ABCD có:
+ O là trung điểm của AC (do OA = OCOA = OC).
+ O là trung điểm của BD (do OB = ODOB = OD).
=> Tứ giác ABCD là hình bình hành (dhnb).
=> AB // CD (Tính chất hình bình hành).
c) Xét tam giác ABC có:
+ M là trung điểm của AB (gt).
+ O là trung điểm của AC (do OA = OCOA = OC).
=> MO là đường trung bình.
=> MO // BC và MO = 1212 BC (Tính chất đường trung bình trong tam giác). (1)
Xét tam giác BDC có:
+ N là trung điểm của CD (gt).
+ O là trung điểm của BD (do OB = ODOB = OD).
=> NO là đường trung bình.
=> NO // BC và NO = 1212 BC (Tính chất đường trung bình trong tam giác). (2)
Từ (1) và (2) => 3 điểm M; O; N thẳng hàng và MO = NO (do cùng = 1212 BC).
=> O là trung điểm của MN (đpcm).
Bài 2:
Xét tứ giác ACBH có
M là trung điểm của AB
M là trung điểm của HC
Do đó: ACBH là hình bình hành
Suy ra: BH//AC
hay BH\(\perp\)AB