CMR:Với mọi GT dương của a,b ta đều có:
( 1 + a + b ) ( ab + a + b ) \(\ge\) 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt Cosi cho 2 số dương, ta có:
* \(\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}=\frac{a^3}{b^2}+a+\frac{b^3}{c^2}+b+\frac{c^3}{a^2}+c-a-b-c\)\(\ge2\sqrt{\frac{a^3}{b^2}.a}+2\sqrt{\frac{b^3}{c^2}.b}+2\sqrt{\frac{c^3}{a^2}.c}-a-b-c\)\(=2.\frac{a^2}{b}+2.\frac{b^2}{c}+2.\frac{c^2}{a}-a-b-c\)
* \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-a-b-c=\frac{a^2}{b}+b+\frac{b^2}{c}+c+\frac{c^2}{a}+a-2a-2b-2c\)
\(\ge2\sqrt{\frac{a^2}{b}.b}+2\sqrt{\frac{b^2}{c}.c}+2\sqrt{\frac{c^2}{a}.a}-2a-2b-2c=0\)
\(\Rightarrow\)\(2.\frac{a^2}{b}+2.\frac{b^2}{c}+2.\frac{c^2}{a}-a-b-c\ge\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)
\(\Rightarrow\)\(\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}\ge\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)
Nếu đúng cho mình nhé.
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\)
\(=\frac{b^2c^2}{ab+ca}+\frac{c^2a^2}{bc+ab}+\frac{a^2b^2}{ca+bc}\)
\(\ge\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\frac{1}{2}\left(ab+bc+ca\right)\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel(hoặc áp dụng BĐT quen thuộc: \(\frac{p^2}{m}+\frac{q^2}{n}\ge\frac{\left(p+q\right)^2}{m+n}\) 2 lần),ta có:
\(VT=\frac{\left(\frac{1}{a^2}\right)}{a\left(b+c\right)}+\frac{\left(\frac{1}{b^2}\right)}{b\left(c+a\right)}+\frac{\left(\frac{1}{c^2}\right)}{c\left(a+b\right)}\)
\(\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}\) (thay abc = 1 vào)
\(=\frac{ab+bc+ca}{2}=\frac{1}{2}\left(ab+bc+ca\right)^{\left(đpcm\right)}\)
Uầy cái này là bổ đề huyền thoại của lớp 9 rồi :333333333
BĐT cần CM <=> \(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\)
<=> \(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b\right)\left(b+c\right)\left(c+a\right)+8abc\)
<=> \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Mà theo CAUCHY 2 số thì \(a+b\ge2\sqrt{ab};b+c\ge2\sqrt{bc};c+a\ge2\sqrt{ca}\)
Nhân lại => \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
=> Ta có điều phải chứng minh.
Áp dụng BĐT AM-GM với 3 số a, b, c ta luôn có:
\(a+b\ge2\sqrt{ab}\), dấu bằng xảy ra khi a = b.
\(b+c\ge2\sqrt{bc}\), dấu bằng xảy ra khi b = c.
\(a+c\ge2\sqrt{ac}\) , dấu bằng xảy ra khi a = c.
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{bc}.2\sqrt{ab}.2\sqrt{ac}=8abc\)
lại có \(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc=\left(a+b+c\right)\left(ab+bc+ca\right)\le\left(\frac{1}{8}+1\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\le\frac{9}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\left(đpcm\right)\)
Dấu ''='' xảy ra khi a=b=c
Bài làm:
Ta có: \(\frac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\frac{2b}{b-a}\)
\(=\frac{\sqrt{a}+\sqrt{b}}{2\left(\sqrt{a}-\sqrt{b}\right)}-\frac{\sqrt{a}-\sqrt{b}}{2\left(\sqrt{a}+\sqrt{b}\right)}+\frac{2b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2-\left(\sqrt{a}-\sqrt{b}\right)^2+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\frac{a+2\sqrt{ab}+b-a+2\sqrt{ab}-b+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\frac{4\sqrt{ab}+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\frac{4\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\frac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)
=> đpcm
\(D=\sqrt{3-2\sqrt{2}}-\sqrt{3+2\sqrt{2}}\)
\(=\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{\left(\sqrt{2}+1\right)^2}\)
\(=\sqrt{2}-1-\sqrt{2}-1=-2\)
___
Ta có: \(\left(\sqrt{a-1}-1\right)^2\ge0\forall a\ge1\)
\(\Leftrightarrow a-2\sqrt{a-1}\ge0\)
\(\Leftrightarrow\frac{\sqrt{a-1}}{a}\le\frac{1}{2}\)
Tương tự: \(\frac{\sqrt{b-1}}{b}\le\frac{1}{2}\)
\(\Rightarrow\frac{\sqrt{a-1}}{a}+\frac{\sqrt{b-1}}{b}\le1\)
\(\Leftrightarrow b\sqrt{a-1}+a\sqrt{b-1}\le ab\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=2\)
\(D=\sqrt{2+1-2\sqrt{2}}-\sqrt{2+1+2\sqrt{2}}\)
\(D=\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{\left(\sqrt{2}+1\right)^2}\)
\(D=\sqrt{2}-1-\left(\sqrt{2}+1\right)\)
\(D=\sqrt{2}-1-\sqrt{2}-1\)
\(D=-2\)
CÂU THỨ 2 NHA !!!!!!
XÉT: \(2VT=2a\sqrt{b-1}+2b\sqrt{a-1}\)
=> \(2VT=a.2.\sqrt{1}.\sqrt{b-1}+b.2.\sqrt{1}.\sqrt{a-1}\)
TA ÁP DỤNG BĐT CAUCHY 2 SỐ SẼ ĐƯỢC:
=> \(2VT\le a\left(1+b-1\right)+b\left(1+a-1\right)\)
=> \(2VT\le ab+ab\)
=> \(2VT\le2ab\)
=> \(VT\le ab\)
=> TA CÓ ĐIỀU PHẢI CHỨNG MINH.
a/ Biến đổi tương đương:
\(\Leftrightarrow3a^2-3ab+3b^2\ge a^2+ab+b^2\)
\(\Leftrightarrow2\left(a^2-2ab+b^2\right)\ge0\)
\(\Leftrightarrow2\left(a-b\right)^2\ge0\) (luôn đúng)
b/ \(\frac{a^3}{a^2+ab+b^2}=a-\frac{ab\left(a+b\right)}{a^2+ab+b^2}\ge a-\frac{ab\left(a+b\right)}{3\sqrt[3]{a^2.ab.b^2}}=a-\frac{a+b}{3}=\frac{2a}{3}-\frac{b}{3}\)
Tương tự: \(\frac{b^3}{b^2+bc+c^2}\ge\frac{2b}{3}-\frac{c}{3}\) ; \(\frac{c^3}{c^2+ca+a^2}\ge\frac{2c}{3}-\frac{a}{3}\)
Cộng vế với vế ta có đpcm
Bài toán sai ngay với $a=0,5$ và $b=1$