K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2021

TH1: Xét cox = 0 ( có p là nghiệm ko)

TH2: Xét \(\cos x\ne0\). Ta chia cả hai vế \(\cos^2x\)

Pt trở thành \(2\tan^2x-4\tan x+4-1\left(1+\tan^2x\right)=0\)

\(\Leftrightarrow\tan^2x-4\tan x+3=0\)

Đặt \(\tan x=t\). Giải pt nữa là xg ạ

27 tháng 8 2021

\(2sin^2x-4sinx.cosx+4cos^2x=1\)

\(\Leftrightarrow2\left(sin^2x+cos^2x\right)-4sinx.cosx+2cos^2x-1=0\)

\(\Leftrightarrow2-2sin2x+cos2x=0\)

\(\Leftrightarrow2sin2x-cos2x=2\)

\(\Leftrightarrow\sqrt{5}\left(\dfrac{2}{\sqrt{5}}sin2x-\dfrac{1}{\sqrt{5}}cos2x\right)=2\)

\(\Leftrightarrow sin\left(2x-arccos\dfrac{2}{\sqrt{5}}\right)=\dfrac{2}{\sqrt{5}}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-arccos\dfrac{2}{\sqrt{5}}=arcsin\dfrac{2}{\sqrt{5}}+k2\pi\\2x-arccos\dfrac{2}{\sqrt{5}}=\pi-arcsin\dfrac{2}{\sqrt{5}}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}arccos\dfrac{2}{\sqrt{5}}+\dfrac{1}{2}arcsin\dfrac{2}{\sqrt{5}}+k\pi\\x=\dfrac{\pi}{2}+\dfrac{1}{2}arccos\dfrac{2}{\sqrt{5}}-\dfrac{1}{2}arcsin\dfrac{2}{\sqrt{5}}+k\pi\end{matrix}\right.\)

1 tháng 6 2017

a) Đ

b) S

c) S

d) Đ

12 tháng 3 2022

a, để pt trên là pt bậc nhất khi m khác 2 

b, Ta có \(2x+5=x+7-1\Leftrightarrow x=1\)

Thay x = 1 vào pt (1) ta được 

\(2\left(m-2\right)+3=m-5\Leftrightarrow2m-1=m-5\Leftrightarrow m=-4\)

6 tháng 1 2018

Hai bất phương trình tương đương là hai bất phương trình có cùng tập nghiệm.

Do bất phương trình x > 3 và bất phương trình 6 < 2x có cùng tập nghiệm là { x| x > 3 } nên hai bất phương trình này là hai bất phương trình tương đương

NV
10 tháng 7 2021

\(\Leftrightarrow2sin^3x+1-sin^2x-1=0\)

\(\Leftrightarrow sin^2x\left(2sinx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

22 tháng 7 2017

Đáp án: C

Ta thấy phương trình  có cùng tập nghiệm với phương trình  nên 2 phương trình là tương đương.

AH
Akai Haruma
Giáo viên
27 tháng 6 2021

Lời giải:
a/

PT $(1)$ có nghiệm $x=\frac{2}{3}$. PT $(2)$ có nghiệm $x=\frac{3}{2}$

Cộng 2 vế tương ứng của pt đã cho thì có:

$5x=5\Leftrightarrow x=1$

Vậy tập nghiệm của pt sau không giống 2 pt đầu nên câu trả lời là không.

b. 

PT đó không phải hệ quả của 1 trong 2 PT ban đầu vì \(\left\{\frac{2}{3}\right\}\not\subset\left\{1\right\}; \left\{\frac{3}{2}\right\}\not\subset\left\{1\right\}\)

 

25 tháng 3 2017

a)     Phương trình bậc nhất một ẩn là phương trình  2x -8 = 0

b)    Hai phương trình tương đương là hai phương trình có cùng tập nghiệm

Hai PT đã cho tương đương với nhau vì chúng có cùng tập nghiệm

S = {-2/3}

 

25 tháng 3 2017

a) Phương trình bậc nhất một ẩn là phương trình :

         2x - 8 = 0

b) Hai phương trình tương đương với nhau vì chúng có cùng tập nghiệm

Hai PT đã cho tương đương với nhau vì chúng có cùng tập nghiệm

        S = ( -2 / 3 )

ai tk mk mk tk lại!!

19 tháng 3 2022

chọn A