K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2022

...

NV
23 tháng 4 2022

\(y'=7\left(-x^2+3x+7\right)^6.\left(-x^2+3x+7\right)'\)

\(=7\left(-2x+3\right)\left(-x^2+3x+7\right)^6\)

1: \(A=\left(-x+5\right)\left(x-2\right)+\left(x-7\right)\left(x+7\right)\)

\(=-x^2+2x+5x-10+x^2-49=7x-59\)

\(B=\left(3x+1\right)^2-\left(3x-2\right)\left(3x+2\right)\)

\(=9x^2+6x+1-9x^2+4=6x+5\)

=>7x-59=6x+5

=>x=64

2: \(A=\left(5x-1\right)\left(x+1\right)-2\left(x-3\right)^2\)

\(=5x^2+5x-x-1-2x^2+12x-9\)

\(=3x^2+16x-10\)

\(B=\left(x+2\right)\left(3x-1\right)-\left(x+4\right)^2+x^2-x\)

\(=3x^2-x+6x-2-x^2-8x-16+x^2-x\)

\(=3x^2-4x-18\)

=>16x-10=-4x-18

=>20x=-8

hay x=-2/5

2:

a: =>x^2+3x-4x-12-(x^2-5x+x-5)=8

=>x^2-x-12-x^2+4x+5=8

=>3x-7=8

=>3x=15

=>x=5

b: =>3x^2+3x-2x-2-3x^2-21x=13

=>-20x=15

=>x=-3/4

c: =>x^2-25-x^2-2x=9

=>-2x=25+9=34

=>x=-17

d: =>x^3-1-x^3+3x=1

=>3x-1=1

=>3x=2

=>x=2/3

19 tháng 1 2022

a/ (x-1)2-(4x+3)(2-x)=x2-2x+1-(8x-4x2+6-3x)

=x2-2x+1-8x+4x2-6+3x=5x2-7x-6

b/ (15x3y2 - 6x2y3) : 3x2y2 = 5x - 2y

c/ \(\dfrac{x+7}{x-7}-\dfrac{x-7}{x+7}+\dfrac{4x^2}{x^2-49}\)=\(\dfrac{\left(x+7\right)^2-\left(x-7\right)^2+4x^2}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{x^2+14x+49-\left(x^2-14x+49\right)+4x^2}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{28x+4x^2}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{4x\left(x+7\right)}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{4x}{x-7}\)

20 tháng 11 2021

a) \(\Rightarrow\left(x-2\right)\left(x+1\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

b) \(\Rightarrow\left(x-3\right)\left(5x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)

c) \(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)

d) \(\Rightarrow\left(x-7\right)\left(3x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=\dfrac{2}{3}\end{matrix}\right.\)

20 tháng 11 2021

\(a,\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\\ b,\Leftrightarrow\left(x-3\right)\left(5x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\\ c,\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\\ d,\Leftrightarrow\left(x-7\right)\left(3x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=7\\x=\dfrac{2}{3}\end{matrix}\right.\)

2 tháng 11 2016

a) (2x-3)(x-2) = 2x2 - 3x - 4x +6 = 2x2 - 7x +6

b)2x(5-3x)-3(x-7) = 10x-6x2-3x+21= -6x2+7x+21

c)3x(2-3x)+3x(3x-2)-5(x-7) = 3x(2-3x) - 3x(2-3x) - 5(x-7)= -5(x-7)= -5x + 35

2 tháng 11 2016

thanks

 

9 tháng 1 2017

3x - 7 = 2x + 5

3x - 2x = 5 + 7

x = 12

|3x - 2| = 7

\(\Rightarrow\left\{\begin{matrix}3x-2=7\\-\left(3x-2\right)=7\end{matrix}\right.\Rightarrow\left\{\begin{matrix}3x=9\\-3x+2=7\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}x=3\\-3x=5\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=3\\x=-\frac{5}{3}\end{matrix}\right.\)

4 - |x - 2| = -3

|x - 2| = 4 - (-3)

|x - 2| = 7

\(\Rightarrow\left\{\begin{matrix}x-2=7\\-\left(x-2\right)=7\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=9\\-x+2=7\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}x=9\\-x=5\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=9\\x=-5\end{matrix}\right.\)

|2x - 3| = x - 1

\(\Rightarrow\left\{\begin{matrix}2x-3=x-1\\-\left(2x-3\right)=x-1\end{matrix}\right.\Rightarrow\left\{\begin{matrix}2x-x=-1+3\\-2x+3=x-1\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}x=2\\-2x-x=-1-3\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=2\\-3x=-4\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}x=2\\x=\frac{4}{3}\end{matrix}\right.\)

|3x + 1| = x + 3

\(\Rightarrow\left\{\begin{matrix}3x+1=x+3\\-\left(3x+1\right)=x+3\end{matrix}\right.\Rightarrow\left\{\begin{matrix}3x-x=3-1\\-3x-1=x+3\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}2x=2\\-3x-x=3+1\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=1\\-4x=4\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}x=1\\x=-1\end{matrix}\right.\)