K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2017

\(\sqrt[3]{26+15\sqrt{3}}+\sqrt[3]{26-15\sqrt{3}}\)

=\(\sqrt[3]{\left(\sqrt{3}+2\right)^3}+\sqrt[3]{\left(\sqrt{3}-2\right)^3}\)

=\(\sqrt{3}+2+\sqrt{3}-2=2\sqrt{3}\)

NV
14 tháng 5 2021

Đặt \(x=\sqrt[3]{26+15\sqrt{3}}+\sqrt[3]{26-15\sqrt[]{3}}\)

\(\Rightarrow x^3=52+3\sqrt[3]{\left(26+15\sqrt[]{3}\right)\left(26-15\sqrt[]{3}\right)}.x\)

\(\Leftrightarrow x^3=52+3x\)

\(\Leftrightarrow x^3-3x-52=0\)

\(\Leftrightarrow\left(x-4\right)\left(x^2+4x+13\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left[\left(x+2\right)^2+9\right]=0\)

\(\Leftrightarrow x=4\)

2 tháng 9 2015

Cm nó bằng 4 ạk!!!! Thưa các bác!

11 tháng 7 2023

\(=\sqrt{\left(2-\sqrt{3}\right)^2\left(26+15\sqrt{3}\right)}-\sqrt{\left(2+\sqrt{3}\right)^2\left(26-15\sqrt{3}\right)}=\)

\(=\sqrt{\left(7-4\sqrt{3}\right)\left(26+15\sqrt{3}\right)}-\sqrt{\left(7+4\sqrt{3}\right)\left(26-15\sqrt{3}\right)=}\)

\(=\sqrt{7.26+7.15\sqrt{3}-4.26\sqrt{3}-180}-\sqrt{7.26-7.15\sqrt{3}+4.26\sqrt{3}-180}=\)

\(=\sqrt{4+\sqrt{3}}-\sqrt{4-\sqrt{3}}\)

AH
Akai Haruma
Giáo viên
17 tháng 8 2021

Lời giải:

Gọi biểu thức trên là $A$

Đặt \(\sqrt[3]{15\sqrt{3}-26}=a; \sqrt[3]{15\sqrt{3}+26}=b\). Ta có:

\(a^3-b^3=-52\)

\(ab=-1\)

\(A^3=(a-b)^3=a^3-3ab(a-b)-b^3=-52+3A\)

\(\Leftrightarrow A^3-3A+52=0\)

\(\Leftrightarrow A^2(A+4)-4A(A+4)+13(A+4)=0\)

\(\Leftrightarrow (A+4)(A^2-4A+13)=0\)

Dễ thấy $A^2-4A+13>0$ nên $A+4=0$

$\Leftrightarrow A=-4$

 

27 tháng 10 2019

a)\(A=^3\sqrt{20+14\sqrt{2}}+^3\sqrt{20-14\sqrt{2}}\)

=>  \(A^3=\left(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\right)^3\)

\(=20+14\sqrt{2}+20-14\sqrt{2}\)

\(+3\left(\text{​​}^3\sqrt{20+14\sqrt{2}}+^3\sqrt{20-14\sqrt{2}}\right)\left(^3\sqrt{20+14\sqrt{2}}.^3\sqrt{20-14\sqrt{2}}\right)\)

\(=40+3A.^3\sqrt{\left(20+14\sqrt{2}\right)\left(20+14\sqrt{2}\right)}\)

\(\Rightarrow A^3=40+3.A.2\)

=> \(A^3-6A-40=0\)

<=> \(A^3-16A+10A-40=0\)

<=> \(A\left(A-4\right)\left(A+4\right)+10\left(A-4\right)=0\)

<=> \(\left(A-4\right)\left(A^2+4A+10\right)=0\)

<=> A = 4 ( vì \(A^2+4A+10=\left(A+2\right)^2+6>0\))

Vậy A = 4.

b/ \(B=^3\sqrt{26+15\sqrt{3}}-^3\sqrt{26-15\sqrt{3}}\)

=> \(B^3=\left(^3\sqrt{26+15\sqrt{3}}-^3\sqrt{26-15\sqrt{3}}\right)^3\)

\(=26+15\sqrt{3}-26+15\sqrt{3}\)

\(-3\left(^3\sqrt{26+15\sqrt{3}}-^3\sqrt{26-15\sqrt{3}}\right).^3\sqrt{26+15\sqrt{3}}.^3\sqrt{26-15\sqrt{3}}\)

\(=30\sqrt{3}-3B.1\)

=> \(B^3+3B-30\sqrt{3}=0\)

<=> \(B^3-12B+15B-30\sqrt{3}=0\)

<=> \(B\left(B-2\sqrt{3}\right)\left(B+2\sqrt{3}\right)+15\left(B-2\sqrt{3}\right)=0\)

<=> \(\left(B-2\sqrt{3}\right)\left(B^2+2\sqrt{3}B+15\right)=0\)

<=> \(B-2\sqrt{3}=0\)( vì \(B^2+2\sqrt{3}B+15=\left(B+\sqrt{3}\right)^2+12>0\))

<=> \(B=2\sqrt{3}\)

14 tháng 2 2022

B . 26 giờ 15 phút

14 tháng 2 2022

Đáp án B. 26 giờ 15 phút

NV
25 tháng 10 2019

\(a=\sqrt[3]{15\sqrt{3}+26}+\sqrt[3]{15\sqrt{3}-26}\)

\(a^3=30\sqrt{3}+3a.\sqrt[3]{15^2.3-26^2}=30\sqrt{3}-3a\)

\(\Leftrightarrow a^3+3a-30\sqrt{3}=0\)

\(\Leftrightarrow\left(a-2\sqrt{3}\right)\left(a^2+2\sqrt{3}a+15\right)=0\)

\(\Rightarrow a=2\sqrt{3}\)

25 tháng 10 2019

Căn bậc hai. Căn bậc ba mơn đại ca

15 tháng 12 2022

=-3/26(-15/29-2/19)

=-3/26*(-17/19)

=3/26*17/19

=51/494

15 tháng 12 2022

\(-\dfrac{3}{26}.\left(-\dfrac{15}{19}\right)-\dfrac{2}{19}.\left(-\dfrac{3}{26}\right)\)

\(=-\dfrac{3}{26}.\text{[}\left(-\dfrac{15}{19}-\dfrac{2}{19}\right)\)

\(=-\dfrac{3}{26}.\left(-\dfrac{17}{19}\right)\)

=\(\dfrac{51}{494}\)