K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2017

\(A=\dfrac{\left(12.8\right)^3.5}{2^9.15^2}=\dfrac{\left(2^2.3.2^3\right)^3.5}{2^9.\left(3.5\right)^2}=\dfrac{2^6.3^3.2^9.5}{2^9.3^2.5^2}=\dfrac{2^{15}.3^3.5}{2^9.3^2.5^2}=\dfrac{2^6.3.1}{1.1.5}=\dfrac{192}{5}\)

25 tháng 9 2017

A=\(\dfrac{12^3\cdot8^3\cdot5}{2^9\cdot\left(3\cdot5\right)^2}\)

A=\(\dfrac{\left(2^2\cdot3\right)^3\cdot\left(2^3\right)^3\cdot5}{2^9\cdot3^2\cdot5^2}\)

A=\(\dfrac{\left(2^2\right)^3\cdot3^3\cdot2^9\cdot5}{2^9\cdot3^2\cdot5^2}\)

A=\(\dfrac{2^6\cdot3^3\cdot2^9\cdot5}{2^9\cdot3^2\cdot5^2}\)

A=\(\dfrac{2^6\cdot3}{5}\)

A=\(\dfrac{64\cdot3}{5}\)

A=\(\dfrac{192}{5}\)

Vậy A=\(\dfrac{192}{5}\)

Tích cho mình nhé!

9 tháng 3 2021

\(A=\dfrac{1}{2}\left(2.\dfrac{2}{3}\right)\left(\dfrac{3}{2}.\dfrac{3}{4}\right)\left(\dfrac{4}{3}.\dfrac{4}{5}\right)....\left(\dfrac{2016}{2015}.\dfrac{2016}{2017}\right)\)

\(=\dfrac{2016}{2017}\)

25 tháng 5 2022

\(A=\dfrac{1}{2}.\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)....\left(\dfrac{1}{2015.2017}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{2}{1}.\dfrac{2}{3}\right).\left(\dfrac{3}{2}.\dfrac{3}{4}\right).\left(\dfrac{4}{3}.\dfrac{4}{5}\right)....\left(\dfrac{2016}{2015}.\dfrac{2016}{2017}\right)\)

\(=\dfrac{1}{2}.\left(\dfrac{2}{1}.\dfrac{2}{3}\right).\left(\dfrac{3}{2}.\dfrac{3}{4}\right).\left(\dfrac{4}{3}.\dfrac{4}{5}\right).....\left(\dfrac{2016}{2015}.\dfrac{2016}{2017}\right)\)

\(=\dfrac{2016}{2017}\)

25 tháng 5 2022

undefined

17 tháng 10 2023

\(A=\dfrac{1}{2}\left(\dfrac{2.2}{1.3}\right).\left(\dfrac{3.3}{2.4}\right)...\left(\dfrac{2020.2020}{2019.2021}\right)\)

\(=\dfrac{1.2.2.3.3...2020.2020}{1.2.2.3.3.4.4...2019.2021}\)

\(=\dfrac{1}{2021}\)

17 tháng 10 2023

\(A=\dfrac{1}{2}\cdot\left(1+\dfrac{1}{1\cdot3}\right)\left(1+\dfrac{1}{2\cdot4}\right)\left(1+\dfrac{1}{3\cdot5}\right)...\left(1+\dfrac{1}{2019\cdot2021}\right)\)

\(A=\dfrac{1}{2}\left(1+\dfrac{1}{2^2-1}\right)\left(1+\dfrac{1}{3^2-1}\right)\left(1+\dfrac{1}{4^2-1}\right)...\left(1+\dfrac{1}{2020^2-1}\right)\)

\(A=\dfrac{1}{2}\cdot\dfrac{2^2}{\left(2-1\right)\left(2+1\right)}\cdot\dfrac{3^2}{\left(3-1\right)\cdot\left(3+1\right)}...\left(\dfrac{2020^2}{\left(2020-1\right)\cdot\left(2020+1\right)}\right)\)

\(A=\dfrac{1}{2}\cdot\dfrac{2}{1}\cdot\dfrac{2}{3}\cdot\dfrac{3}{2}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2020}{2019}\cdot\dfrac{2020}{2021}\)

\(A=\dfrac{1}{2}\cdot\dfrac{2}{1}\cdot\dfrac{3}{2}\cdot...\cdot\dfrac{2020}{2019}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2020}{2021}\)

\(A=\dfrac{1}{2}\cdot2020\cdot\dfrac{2}{2021}=\dfrac{2020}{2021}\)

26 tháng 4 2017

a. \(\dfrac{2^3.5^2.7^2.3^7}{49.5^3.3^6.11}\)

= \(\dfrac{2^3.3}{5.11}=\dfrac{24}{55}\)

b. \(4.\left(\dfrac{-1}{2}\right)^3-2.\left(\dfrac{-1}{2}\right)^2+3\left(\dfrac{-1}{2}\right)+1\)

=\(-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{2}\)

= 3\(\left(\dfrac{-1}{2}\right)\)

=\(\dfrac{-3}{2}\)

\(=\dfrac{1}{2}\cdot\dfrac{2^2-1+1}{\left(2-1\right)\left(2+1\right)}\cdot\dfrac{3^2-1+1}{\left(3-1\right)\left(3+1\right)}\cdot...\cdot\dfrac{2016^2-1+1}{\left(2016-1\right)\left(2016+1\right)}\)

\(=\dfrac{1}{2}\cdot\dfrac{2}{1}\cdot\dfrac{3}{2}\cdot...\cdot\dfrac{2016}{2015}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2016}{2017}\)

\(=\dfrac{1}{2}\cdot2016\cdot\dfrac{2}{2017}=\dfrac{2016}{2017}\)

6 tháng 4 2017

a) \(\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{6}\right)\left(1-\dfrac{1}{10}\right)...\left(1-\dfrac{1}{780}\right)\)

\(=\dfrac{2}{3}.\dfrac{5}{6}.\dfrac{9}{10}.....\dfrac{779}{780}\)\(=\)

Thuật toán: 

Bước 1: Nhập n

Bước 2: i←1; a←0;

Bước 3: a←a+1/(i*(i+2));

Bước 4: i←i+1;

Bước 5: Nếu i<=n thì quay lại bước 3

Bước 6: xuất a

Bước 7: Kết thúc

Viết chương trình:

uses crt;

var a:real;

i,n:longint;

begin

clrscr;

write('Nhap n='); readln(n);

a:=0;

for i:=1 to n do

a:=a+1/(i*(i+2));

writeln(a:4:2);

readln;

end.

25 tháng 1 2021

Em cảm ơn anh !

\(R=\dfrac{\sqrt{\left(-\dfrac{2}{5}\cdot\dfrac{-5}{8}\right)^3\cdot5^2}}{\sqrt[3]{\dfrac{-3^3}{4^3}\cdot\dfrac{5^2}{2^6\cdot3^2}\cdot\dfrac{5^4}{3^4}}}\)

\(=\dfrac{\sqrt{\left(\dfrac{1}{4}\right)^3\cdot5^2}}{\sqrt[3]{\dfrac{-1}{3^3}\cdot\dfrac{25^3}{16^3}}}=\dfrac{5}{8}:\dfrac{-5}{3\cdot4}=\dfrac{5}{8}\cdot\dfrac{3\cdot4}{-5}=-\dfrac{3}{2}\)