So sánh :
a) 224 và 336
b) 2332 và 3223
Giúp mình bài này nha ! Thanks
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`@` `\text {Ans}`
`\downarrow`
`a)`
\(3^{200}\text{ và }2^{300}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
Vì `9 > 8 => 9^100 > 8^100`
`=> 3^200 > 2^300`
`b)`
\(27^{101}\text{ và }81^{35}\)
\(27^{101}=\left(3^3\right)^{101}=3^{303}\)
\(81^{35}=\left(3^4\right)^{35}=3^{140}\)
Vì `303 > 140 => 3^303 > 3^140`
`=> 27^101 > 81^35`
`c)`
\(2^{332}\text{ và }3^{223}\)
\(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)
Vì `9 > 8 => 9^111 > 8^111`
`=> 2^332 < 3^223.`
a: 3^200=9^100
2^300=8^100
mà 9>8
nên 3^200>2^300
b: 27^101=3^303
81^35=3^140
mà 303>140
nên 27^101>81^35
c: 2^332<2^333=8^111
3^223>3^222=9^111
mà 9>8
nên 3^223>8^111>2^332
Ta có 3223 > 3222 = (32)111 = 9111. (1)
2332 < 2333 = (23)111 = 8111. (2)
Từ (1) và (2) suy ra: 2332 < 8111 < 9111 < 3223.
Vậy 2332 < 3223
Có \(a\left(b+1\right)< b\left(a+1\right)\Leftrightarrow ab+a< ab+b\)
\(\Rightarrow\frac{a}{b}< \frac{a+1}{b+1}\)
Áp dụng \(\frac{2^{2018}}{3^{2019}}< \frac{2^{2018}+1}{3^{2019}+1}\)
Ta có:
\(1-\frac{a}{b}=\frac{b-a}{b}\)
\(1-\frac{a+1}{b+1}=\frac{b+1-a-1}{b+1}=\frac{b-a}{b+1}\)
Vì b < b + 1 và a < b; a, b nguyên dương => b - a > 0 nên \(\frac{b-a}{b}>\frac{b-a}{b+1}\)
Do đó \(1-\frac{a}{b}>1-\frac{a+1}{b+1}\)
\(\Rightarrow\frac{a}{b}< \frac{a+1}{b+1}\)
Áp dụng chứng minh tương tự nhé bạn
a ) 53 54 < 96 97 . b ) 93 102 > 23 32 . c ) − 299 300 < − 101 102 . d ) − 163 167 > − 223 227
a) >
b) >
mk ko bt lm đúng hay ko vì mk lớp 5 thôi mà...
nếu đúng k mk nhé
snow white
Ta có :
A = 35 x 53 - 18
= ( 34 + 1 ) x 53 - 18
= 34 x 53 + 53 - 18
= 34 x 53 + 35
B = 35 + 53 x 34
Ta thấy : 34 x 53 + 35 = 35 + 53 x 34 nên 35 x 53 - 18 = 35 + 53 x 34
=> A = B
# Học tốt #
a/ \(2^{24}=\left(2^2\right)^{12}=4^{12}\)
\(3^{36}=\left(3^3\right)^{12}=27^{12}\)
Vì \(4^{12}< 27^{12}\Leftrightarrow2^{24}< 3^{36}\)
b/ Ta có :
\(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)
Vì \(8^{111}< 9^{111}\Leftrightarrow2^{332}< 8^{111}< 9^{111}< 3^{223}\)
\(\Leftrightarrow2^{332}< 3^{223}\)
a)Ta có:
\(2^{24}=\left(2^2\right)^{12}=4^{12}\)
\(3^{36}=\left(3^3\right)^{12}=9^{12}\)
Vì 9>4 nên 9^12>4^12
<=>2^24<3^36
b)Ta có:
\(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)
Vì 8^111<9^111 nên 2^332<8^111<9^111<3^223<=>2^332<3^223