Tìm x :
\(4^{x+3}-3.4^{x+1}=13.4^{11}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4x+3 - 3.4x+1 = 13.411
4x+1.(42 - 3) = 13.411
4x+1.13 = 13.411
=> 4x+1 = 411
=> x + 1 = 11
=> x = 10
4x+3 - 3.4x+1 = 13.411
4x+1.(16-3) = 13.411
4x+1.13 = 13.411
4x+1 = 411
<=> x+1 = 11
x = 10
Lời giải:
1.
$3^{x+2}+4.3^{x+1}=7.3^6$
$3^{x+1}.3+4.3^{x+1}=7.3^6$
$3^{x+1}(3+4)=7.3^6$
$3^{x+1}.7=7.3^6$
$\Rightarrow 3^{x+1}=3^6$
$\Rightarrow x+1=6$
$\Rightarrow x=5$
2.
$5^{x+4}-3.5^{x+3}=2.5^{11}$
$5^{x+3}.5-3.5^{x+3}=2.5^{11}$
$5^{x+3}(5-3)=2.5^{11}$
$2.5^{x+3}=2.5^{11}$
$\Rightarrow 5^{x+3}=5^{11}$
$\Rightarrow x+3=11$
$\Rightarrow x=8$
3.
$4^{x+3}-3.4^{x+1}=13.4^{11}$
$4^{x+1}.4^2-3.4^{x+1}=13.4^{11}$
$4^{x+1}.16-3.4^{x+1}=13.4^{11}$
$13.4^{x+1}=13.4^{11}$
$\Rightarrow 4^{x+1}=4^{11}$
$\Rightarrow x+1=11$
$\Rightarrow x=10$
\(4^{x+3}-3.4^{x+1}=13.4^{11}\)
\(\Leftrightarrow4^x.\left(4^3-3.4\right)=13.4^{11}\)
\(\Leftrightarrow4^x.52=13.4^{11}\)
\(\Leftrightarrow\frac{4^x.52}{13}=\frac{13.4^{11}}{13}\)
\(\Leftrightarrow4^x.4=4^{11}\)
\(\Leftrightarrow4^{x+1}=4^{11}\)
\(\Leftrightarrow x+1=11\)
\(\Leftrightarrow x=10\)
Vậy : \(x=10\)
4x+3-3.4x+1=13.411
4x.43-3.4x.4=13.411
4x(64-12)=13.411
4x.52=13.411
4x+1=411
x+1=11
x=10
\(\Leftrightarrow4^x\cdot64-4^x\cdot12=13\cdot4^{11}\)
\(\Leftrightarrow4^x=13\cdot\dfrac{4^{11}}{52}=4^{10}\)
=>x=10
\(4^{x+3}-3.4^{x+1}=13.4^{11}\)
\(\Rightarrow4^{x+1}.\left(4^2-3\right)=13.4^{11}\)
\(\Rightarrow4^{x+1}.\left(16-3\right)=13.4^{11}\)
\(\Rightarrow4^{x+1}.13=13.4^{11}\)
\(\Rightarrow x+1=11\)
\(\Rightarrow x=11-1\)
\(\Rightarrow x=10\)
\(\Rightarrow4^x\left(4^3-3.4\right)=13.4^{11}\)
\(\Rightarrow4^x.52=13.4^{11}\)
\(\Rightarrow4^x=4^{\left(-1\right)}.4^{11}\)
\(\Rightarrow4^x=4^{10}\)
=> x=10
\(\text{a) Ta co }\) \(4^{x+3}-3.4^{x+1}=13.4^{11}\)
\(\Rightarrow\) \(4^{x+1}\left(16-3\right)=13.4^{11}\)
\(\Rightarrow4^{x+1}.13=13.4^{11}\)
\(\Rightarrow4^{x+1}=4^{11}\)
\(\Rightarrow x+1=11\)
\(\Rightarrow\text{x=10}\)
a)
\(4^{x+3}-3.4^{x+1}=13.4^{11}\)
<=> \(4^{x+1}\left(16-3\right)=13.4^{11}\)
<=> \(4^{x+1}.13=13.4^{11}\)
<=> \(4^{x+1}=4^{11}\)
<=> \(x+1=11\)
<=> x=10
\(4^{x+3}-3.4^{x+1}=13.4^{11}\)
\(16.4^{x+1}-3.4^{x+1}=13.4^{11}\)
\(\left(16-3\right).4^{x+1}=13.4^{11}\)
\(13.4^{x+1}=13.4^{11}\)
\(\Rightarrow x+1=11\)
\(x=10\)
\(4^{x+3}-3.4^{x+1}=13.4^{11}\)
=> \(4^{x+1}.\left(4^2-3\right)=13.4^{11}\)
=> \(4^{x+1}.\left(16-3\right)=13.4^{11}\)
=> \(4^{x+1}.13=13.4^{11}\)
=> \(x+1=11\)
=> \(x=11-1=10\)
\(5^{x+4}-3.5^{x+3}=2.5^{11}\)
\(5^{x+3}\left(5-3\right)=2.5^{11}\)
\(5^{x+3}.2=2.5^{11}\)
\(5^{x+3}=5^{11}\)
\(x+3=11\)
\(x=8\)
\(4^{x+3}-3.4^{x+1}=13.4^{11}\)
\(4^{x+1}\left(4^2-3\right)=13.4^{11}\)
\(4^{x+1}.13=13.4^{11}\)
\(4^{x+1}=4^{11}\)
\(x+1=11\)
\(x=10\)
\(4^{x+3}-3\cdot4^{x+1}=13\cdot4^{11}\)
\(\Rightarrow4^{x+1}\cdot\left(4^2-3\right)=13\cdot4^{11}\)
\(\Rightarrow4^{x+1}\cdot13=13\cdot4^{11}\)
\(\Rightarrow4^{x+1}=4^{11}\)
\(\Rightarrow x+1=11\)
\(\Rightarrow x=10\)
Vậy \(x=10\)
thanks bạn nha