Lớp 6A có số h/s chưa tới 40 em. Nếu xếp 4 em hay 6 em vào 1 tổ đều vừa đủ; Nhưng nếu xếp 7 em vào 1 tổ thì thừa ra 1 em. Hỏi lớp 6A có b/n h/s?
Ai đúng tick liền, HỨA LUÔN!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
(KO THẤT HỨA BAO GIỜ ĐÂU NGHÉ)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số nhỏ hơn 40 và chia hết cho 4 và 6 : 36
Vậy lớp 6a có :
36 + 1 = 37 ( học sinh )
Đáp số : 37 học sinh
Số lớn nhất nhỏ hơn 40 chia hết cho 4 và 6 là: 36
Vậy lớp 6A có số học sinh là:
36 + 1 = 37 ( học sinh )
Đ/S: 37 học sinh
Số lớn nhất < 40 và chia hết cho 4 và 6 : 36
Vậy lớp 6a có :
36 + 1 = 37 ( học sinh )
Đáp số : 37 học sinh
Gọi x là số học sinh
\(\hept{\begin{cases}x⋮4\\x⋮6\\x-1⋮7\end{cases}0< x< 40}\)
\(4=2^2\)
\(6=2\cdot3\)
\(BCNN\left(4;6\right)=2^2\cdot3=12\)
\(x\in B\left(12\right)=\left\{0;;12;24;36;...\right\}\)
x nhỏ hơn 40 chỉ xét 3 trường hợp
x = 12
x - 1 = 11 không chia hết cho 7
x = 24
x - 1 = 23 không chia hết cho 7
x= 36
x - 1 = 35 chia hết cho 7
Vậy lớp 6A có 36 học sinh
Gọi số học sinh khối 6 là x
Theo đề, ta có: \(x\in BC\left(4;6\right)\)
\(\Leftrightarrow x\in B\left(12\right)\)
\(\Leftrightarrow x\in\left\{12;24;36;48\right\}\)
mà x chia 7 dư 1 và x<=40
nên x=36
Gọi số học sinh lớp 6A là a \(\left(a< 40;a\inℕ^∗\right)\)
Theo bài ra ta có \(\hept{\begin{cases}a⋮4\\a⋮6\end{cases}}\Rightarrow a\in BC\left(4;6\right)\)
mà BCNN(4;6) = 12
=> a \(\in B\left(12\right)=\left\{0;12;24;36;48;...\right\}\)(1)
Lại có a : 7 dư 1 (2)
Từ (1) và (2) => a = 36 (tm điều kiện)
Vậy a = 36
Gọi số học sinh của lớp 6A là a. Ta có :
a\(⋮\)4 và a\(⋮\)6 .Vậy \(a\in BC\left\{4;6\right\}=\left\{0;12;24;36;48;60;...\right\}\)
Vì a < 40 nên \(a\in\left\{0;12;24;36\right\}\)
Mà a-1 \(⋮\)7 nên a=36
à mà BC là gì vậy