Giá trị nhỏ nhất của biểu thức A= x2- 8x +11 là:____________
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`A=x^2-4x+1`
`=x^2-4x+4-3`
`=(x-2)^2-3>=-3`
Dấu "=" xảy ra khi x=2
`B=4x^2+4x+11`
`=4x^2+4x+1+10`
`=(2x+1)^2+10>=10`
Dấu "=" xảy ra khi `x=-1/2`
`C=(x-1)(x+3)(x+2)(x+6)`
`=[(x-1)(x+6)][(x+3)(x+2)]`
`=(x^2+5x-6)(x^2+5x+6)`
`=(x^2+5x)^2-36>=-36`
Dấu "=" xảy ra khi `x=0\or\x=-5`
`D=5-8x-x^2`
`=21-16-8x-x^2`
`=21-(x^2+8x+16)`
`=21-(x+4)^2<=21`
Dấu "=" xảy ra khi `x=-4`
`E=4x-x^2+1`
`=5-4+4-x^2`
`=5-(x^2-4x+4)`
`=5-(x-2)^2<=5`
Dấu "=" xảy ra khi `x=5`
+) \(A=\left(x-3\right)^2+2\)
Vì \(\left(x-3\right)^2\)≥0 ∀x
⇒\(A\)≥2 ∀x
Min A=2⇔\(x=3\)
+) \(B=11-x^2\)
Câu này chỉ tìm được max thôi nha
Q = x^2 + 8x + 20
= (x^2 + 8x + 16) + 4
= (x+4)^2 + 4 ≥ 4 với mọi x
Dấu = xảy ra khi :
x+4=0 hay x = -4
VẬY MIN Q = 4 tại x = -4
Q = x2+ 8x + 20
= x2+ 2.4.x + 16+ 4
= (x+4)2+4
Vì (x+4)2 \(\ge\) 0 với mọi x \(\Rightarrow\) (x+4)2+ 4\(\ge\) 0+4
hay Q\(\ge\) 4
Dấu "=" xảy ra \(\Leftrightarrow\) (x+4)2=0 \(\Leftrightarrow\) x+4=0 \(\Leftrightarrow\) x= -4
Vậy Q đạt giá trị nhỏ nhất khi x= -4
Tính giá trị nhỏ nhất:
\(A=x^2-4x+1=(x^2-4x+4)-3=(x-2)^2-3\)
Vì $(x-2)^2\geq 0, \forall x\in\mathbb{R}$ nên $A=(x-2)^2-3\geq 0-3=-3$
Vậy $A_{\min}=-3$
Giá trị này đạt tại $(x-2)^2=0\Leftrightarrow x=2$
$B=4x^2+4x+11=(4x^2+4x+1)+10=(2x+1)^2+10\geq 0+10=10$
Vậy $B_{\min}=10$
Giá trị này đạt tại $(2x+1)^2=0\Leftrightarrow x=-\frac{1}{2}$
$C=(x-1)(x+3)(x+2)(x+6)$
$=(x-1)(x+6)(x+3)(x+2)$
$=(x^2+5x-6)(x^2+5x+6)$
$=(x^2+5x)^2-36\geq 0-36=-36$
Vậy $C_{\min}=-36$. Giá trị này đạt $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
Tìm giá trị lớn nhất:
$D=5-8x-x^2=21-(x^2+8x+16)=21-(x+4)^2$
Vì $(x+4)^2\geq 0, \forall x\in\mathbb{R}$ nên $D=21-(x+4)^2\leq 21$
Vậy $D_{\max}=21$. Giá trị này đạt tại $(x+4)^2=0\Leftrightarrow x=-4$
$E=4x-x^2+1=5-(x^2-4x+4)=5-(x-2)^2\leq 5$
Vậy $E_{\max}=5$. Giá trị này đạt tại $(x-2)^2=0\Leftrightarrow x=2$
Ta có
J = x 2 – 8 x + y 2 + 2 y + 5 = x 2 – 2 . x . 4 + 16 + y 2 + 2 . y . 1 + 1 – 12 = ( x – 2 ) 2 + ( y + 1 ) 2 – 12
Vì ( x – 2 ) 2 ≥ 0 ; ( y + 1 ) 2 ≥ 0 ; Ɐx; y nên ( x – 2 ) 2 + ( y + 1 ) 2 – 12 ≥ -12
Dấu “=” xảy ra khi ó x - 2 =0 và y + 1 = 0 hay x = 2 và y = - 1
Vậy giá trị nhỏ nhất của J là -12 khi x = 2; y = -1
Đáp án cần chọn là: A
a) Từ M = x − 3 2 2 + 31 4 ≥ 31 4 ⇒ M min = 31 4 ⇔ x = 3 2 .
b) Ta có N = ( x + 2 y ) 2 + ( y – 2 ) 2 + ( x + 4 ) 2 – 120 ≥ - 120 .
Tìm được N min = -120 Û x = -4 và y = 2.
A=x2-8x+11
=x2-8x+16-5
=(x+4)2 -5
mà (x+4)2 lớn hơn hoặc bằng 0 nên (x+4)2-5 lớn hơn hoặc bằng -5
Vậỵ giá trị nhỏ nhất của A là -5