Cm với \(\text{m},n\in N\) thì
\(A=\left(\text{m}+2n+1\right)\left(3\text{m}-2n+2\right)\) là số chẵn
>--<
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(2n-1\right)^3-2n+1=\left(2n-1\right)^3-\left(2n-1\right)\)
\(=\left(2n-1\right)\left(4n^2-4n+1-1\right)\)
\(=4n\left(n-1\right)\left(2n-1\right)\)
Ta có: \(4⋮4\Rightarrow4n\left(n-1\right)\left(2n-1\right)⋮4\) (1)
Mà \(n\left(n-1\right)\) là 2 số tự nhiên liên tiếp nên chia hết cho 2
\(\Rightarrow4n\left(n-1\right)\left(2n-1\right)⋮2\) (1)
Từ (1) và (2):
\(\Rightarrow4n\left(n-1\right)\left(2n-1\right)⋮8\)
Hay: \(A⋮8\)
=.= hok tốt!!
Lời giải:
\(M=\frac{1.2.3.4.5.6.7...(2n-1)}{2.4.6...(2n-2).(n+1)(n+2)....2n}=\frac{(2n-1)!}{2.1.2.2.2.3...2(n-1).(n+1).(n+2)...2n}\)
\(=\frac{(2n-1)!}{2^{n-1}.1.2...(n-1).(n+1).(n+2)....2n}=\frac{(2n-1)!}{2^{n-1}.1.2...(n-1).n(n+1)..(2n-1).2}\)
\(=\frac{(2n-1)!}{2^{n-1}.(2n-1)!.2}=\frac{1}{2^{n-1}.2}<\frac{1}{2^{n-1}}\)
Ta có đpcm.
\(A\left(x\right)=Q\left(x\right)\left(x-1\right)+4\)(1)
\(A\left(x\right)=P\left(x\right)\left(x-3\right)+14\)(2)
\(A\left(x\right)=\left(x-1\right)\left(x-3\right)T\left(x\right)+F\left(x\right)\)(3)
Đặt : \(F\left(x\right)=ax+b\)
Với x=1 từ (1) và (3)
\(\hept{\begin{cases}A\left(1\right)=4\\A\left(1\right)=a+b\end{cases}}\)
\(\Rightarrow a+b=4\)(*)
Với x=3 từ (3) và (2)
\(\hept{\begin{cases}A\left(3\right)=14\\A\left(3\right)=3a+b\end{cases}}\)
\(\Rightarrow3a+b=14\)(**)
Từ (*) và (**)
\(\Rightarrow2a=10\Rightarrow a=5\Rightarrow b=-1\)
\(\Rightarrow F\left(x\right)=ax+b=5x-1\)
T lm r, ko bt có đúng ko:))
Dài lắm bn ak,bạn vào google đăng cái này rồi tìm ra kết quả của Online Math nó có cái bài giống thế này chỉ khác 1 tẹo thôi.
\(A_n=\dfrac{\sqrt{2n-1}}{\left(2n+1\right)\left(2n-1\right)}=\dfrac{\sqrt{2n-1}}{2}\left(\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)
\(=\dfrac{\sqrt{2n-1}}{2}\left(\dfrac{1}{\sqrt{2n-1}}-\dfrac{1}{\sqrt{2n+1}}\right)\left(\dfrac{1}{\sqrt{2n-1}}+\dfrac{1}{\sqrt{2n+1}}\right)\)
\(< \dfrac{\sqrt{2n-1}}{2}\left(\dfrac{1}{\sqrt{2n-1}}-\dfrac{1}{\sqrt{2n+1}}\right)\left(\dfrac{1}{\sqrt{2n-1}}+\dfrac{1}{\sqrt{2n-1}}\right)\)
\(=\dfrac{1}{\sqrt{2n-1}}-\dfrac{1}{\sqrt{2n+1}}\)
\(\Rightarrow A_1+A_2+...+A_n< 1-\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{3}}-\dfrac{1}{\sqrt{5}}+...+\dfrac{1}{\sqrt{2n-1}}-\dfrac{1}{\sqrt{2n+1}}=1-\dfrac{1}{\sqrt{2n+1}}< 1\)
Đề là chứng minh N < 1/4 sẽ đúng hơn
Ta có :
\(N=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)
\(\Rightarrow2^2.N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)
Ta lại có :
\(4N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}=1-\frac{1}{n}\)
\(\Rightarrow N< \left(1-\frac{1}{n}\right):4=\frac{1}{4}\left(1-\frac{1}{n}\right)\)
Mà \(n\in N;n\ge2\)=> 1 -\(\frac{1}{n}\)< 1
=> \(N< \frac{1}{4}\left(1-\frac{1}{n}\right)< \frac{1}{4}\)
=> \(N< \frac{1}{4}\)( đpcm )
a/ \(\left[m;m+2\right]\cap\left[-1;2\right]=\varnothing\)
\(\Leftrightarrow\left[{}\begin{matrix}m+2< -1\\m>2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m< -3\\m>2\end{matrix}\right.\)
b/ \(\left(-\infty;9a\right)\cap\left(\frac{4}{a};+\infty\right)\ne\varnothing\)
\(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\frac{4}{a}< 9a\end{matrix}\right.\) \(\Leftrightarrow\frac{\left(2a-3\right)\left(2a+3\right)}{a}>0\Rightarrow\left[{}\begin{matrix}a>\frac{3}{2}\\-\frac{3}{2}< a< 0\end{matrix}\right.\)
c/ \(\left(-\infty;a\right)\cup\left(\frac{4}{a};+\infty\right)=R\)
\(\Rightarrow\left\{{}\begin{matrix}a\ne0\\a>\frac{4}{a}\end{matrix}\right.\) \(\Rightarrow\frac{\left(a-2\right)\left(a+2\right)}{a}>0\Rightarrow\left[{}\begin{matrix}a>2\\-2< a< 0\end{matrix}\right.\)
d/ \([m-3;9)\) có 7 phần tử nguyên khi:
\(7\le9-\left(m-3\right)< 8\Rightarrow4< m\le5\)
đề bài là tìm x à bạn? đề có cho điều kiện ko vậy ạ? (ví dụ như x nguyên?)
\(\left(x-1\right)^3+\left(x^3-8\right).3x.\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right).\left[\left(x-1\right)^2+\left(x^3-8\right).3x\right]=0\)
TH1: \(x-1=0\Leftrightarrow x=1\)
TH2: \(\left(x-1\right)^2+\left(x^3-8\right).3x=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(x^3-8\right).3x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left\{{}\begin{matrix}x^3-8=0\\3x=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\\left\{{}\begin{matrix}x=2\\x=0\end{matrix}\right.\end{matrix}\right.\)
Vậy \(x\in\left\{0;1;2\right\}\)
Nếu: m chẵn , n lẻ thì m + 2n + 1 chẵn => (m+2n+1)(3m-2n+2) chẵn (1)
Nếu: m lẻ , n chẵn thì m + 2n + 1 chẵn => (m+2n+1)(3m-2n+2) chẵn (2)
Nếu: m, n đều lẻ m + 2n + 1 chẵn => (m+2n+1)(3m-2n+2) chẵn (3)
Nếu: m,n đều chẵn 3m-2n+2 chẵn => (m+2n+1)(3m-2n+2) chẵn (4)
Từ (1),(2),(3),(4) suy ra với mọi m,n \(\in\) N thì A = (m+2n+1)(3m-2n+2) là số chẵn