Bài 1:Tìm phân số \(\dfrac{a}{b}\) bằng phân số \(\dfrac{18}{27}\),biết rằng ƯCLN(a,b)=17
Bài 2:Tìm số a sao cho khi chia a cho \(\dfrac{3}{5}\)và \(1\dfrac{3}{7}\)đều đuợc kết quả là số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Ta có: \(4\dfrac{3}{5}+\dfrac{7}{10}< X< \dfrac{20}{3}\)
\(\dfrac{23}{5}+\dfrac{7}{10}< X< \dfrac{20}{3}\)
\(\dfrac{138}{30}< X< \dfrac{200}{3}\)
\(\Rightarrow X\in\left\{\dfrac{160}{30};\dfrac{161}{30};\dfrac{162}{30};...;\dfrac{198}{30};\dfrac{199}{30}\right\}\)
Bài 2: \(X-2019\dfrac{2}{13}=3\dfrac{7}{26}+4\dfrac{7}{52}\)
\(\Rightarrow X-\dfrac{26249}{13}=\dfrac{85}{26}+\dfrac{215}{52}\)
\(\Rightarrow X-\dfrac{26249}{13}=\dfrac{385}{52}\)
\(\Rightarrow X=\dfrac{105381}{52}\)
1: B là số nguyên
=>n-3 thuộc {1;-1;5;-5}
=>n thuộc {4;2;8;-2}
3:
a: -72/90=-4/5
b: 25*11/22*35
\(=\dfrac{25}{35}\cdot\dfrac{11}{22}=\dfrac{5}{7}\cdot\dfrac{1}{2}=\dfrac{5}{14}\)
c: \(\dfrac{6\cdot9-2\cdot17}{63\cdot3-119}=\dfrac{54-34}{189-119}=\dfrac{20}{70}=\dfrac{2}{7}\)
Ta có \(\dfrac{a}{b}=\dfrac{18}{27}=\dfrac{2}{3}\)
Mà \(ƯCLN\left(a,b\right)=13\)
\(\Rightarrow\dfrac{a}{b}\) sau khi rút gọn cho 13 sẽ bằng \(\dfrac{2}{3}\)
Vậy \(\dfrac{a}{b}=\dfrac{2.13}{3.13}=\dfrac{26}{39}\)
Trước hết ta đưa \(\dfrac{18}{27}\) về phân số tối giản. Ta có:\(\dfrac{18}{27}=\dfrac{2}{3}\)
\(\dfrac{2.13}{3.13}=\dfrac{26}{39}\)