Ba điện trở R1, R2, R3 khi mắc nối tiếp có Rtđ = 9 Khi mắc song song có Rtđ = 1 Tìm R1, R2, R3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(R_1\) mắc nối tiếp \(R_2\)
\(\rightarrow R_{12}=R_1+R_2=5+10=15\Omega\)
\(R_{12}\) mắc song song \(R_3\)
\(\rightarrow\frac{1}{R_{tđ}}=\frac{1}{R_{12}}+\frac{1}{R_3}\)
\(\rightarrow\frac{1}{10}=\frac{1}{15}+\frac{1}{R_{tđ}}\)
\(\rightarrow\frac{1}{R_{tđ}}=\frac{1}{30}\)
\(\rightarrow R_3=30\Omega\)
Cho ba điện trở R1 = R2 = R3 = R mắc song song với nhau. Điện trở tương đương đương Rtđ của đoạn mạch đó có thể nhận giá trị nào trong các giá trị
A. Rtđ = R.
B. Rtđ = 2R.
C. Rtđ = 3R.
D. Rtđ = R/3
Giải thích:
\(\dfrac{1}{R_{tđ}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}=\dfrac{1}{R}+\dfrac{1}{R}+\dfrac{1}{R}=\dfrac{3}{R}\)
\(\Rightarrow R_{tđ}=\dfrac{R}{3}\Omega\)
Chọn D.
Bài 2 :
Tóm tắt :
\(R_1=R_2=R_3=40\Omega\)
\(U_{AB}=10V\)
______________________________
\(R_{tđ}=?;I=?;I_1=?I_2=?I_3=?\)
\(U_1=?;U_2=?;U_3=?\)
TH1 : \(R_1//\left(R_2ntR_3\right)\)
TH2 : \(R_2nt\left(R_3//R_1\right)\)
TH3 : R1 //R2//R3
GIẢI :
Trường hợp A :
Điện trở tương đương toàn mạch là :
\(R_{tđ}=\dfrac{R_1.R_{23}}{R_1+R_{23}}=\dfrac{40.\left(40+40\right)}{40+80}\approx26,67\left(\Omega\right)\)
Cường độ đòng điện I là :
\(I=\dfrac{U_{AB}}{R_{tđ}}=\dfrac{10}{26,67}\approx0,37\left(A\right)\)
Vì R1//R23 => \(U_{AB}=U_1=U_{23}=10V\)
\(I_1=\dfrac{U_1}{R_1}=\dfrac{10}{40}=0,25\left(A\right)\)
\(I=I_1+ I_{23}\Rightarrow I_{23}=I-I_1=0,37-0,25=0,12\left(A\right)\)
Vì R2 ntR3 => \(I_2=I_3=I_{23}=0,12A\)
\(\left\{{}\begin{matrix}U_2=I_2.R_2=0,12.40=4,8\left(V\right)\\U_3=U_2=4,8\left(V\right)\end{matrix}\right.\)
Trường hợp B :
Vì R2 nt(R3//R1) nên :
\(R_{tđ}=R_2+\dfrac{R_3.R_1}{R_3+R_1}=40+\dfrac{40.40}{40+40}=60\left(\Omega\right)\)
Cường độ dòng điện I là :
\(I=\dfrac{U_{AB}}{R_{tđ}}=\dfrac{10}{60}=\dfrac{1}{6}\left(A\right)\)
=> \(I=I_2=I_{31}=\dfrac{1}{6}\left(A\right)\)
\(U_2=I_2.R_2=\dfrac{1}{6}.40\approx6,67\left(V\right)\)
\(U_{31}=U_{AB}-U_2=3,33\left(V\right)\)
Mà : R3//R1 => \(U_{31}=U_3=U_1=3,33V\)
\(\left\{{}\begin{matrix}I_3=\dfrac{U_3}{R_3}=\dfrac{3,33}{40}=0,08325\left(A\right)\\I_1=I_3=0,08325\left(A\right)\end{matrix}\right.\)
Trường hợp C :
Vì R1//R2//R3 nên :
Điện trở tương đương toàn mạch là :
\(R_{tđ}=\dfrac{1}{\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}}=\dfrac{1}{\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}}=\dfrac{40}{3}\left(\Omega\right)\)
\(U_{AB}=U_1=U_2=U_3=10V\)
Cường độ dòng điện I là :
\(I=\dfrac{U}{R_{tđ}}=\dfrac{10}{\dfrac{40}{3}}=0,75\left(A\right)\)
\(I_1=I_2=I_3=\dfrac{U_1}{R_1}=\dfrac{10}{40}=0,25\left(A\right)\)
a, \(Rtd=4\left(om\right)< R1=6\left(om\right)\)
=>cần mắc 2 điện trở nối tiếp R1//R2
\(=>4=\dfrac{6R2}{6+R2}=>R2=12\left(om\right)\)
b,\(Rtd=9\left(om\right)>R1=>R1ntR2\)
\(=>9=R1+R2=>R2=3\left(om\right)\)
Bài này thiếu giả thiết, có 3 ẩn nhưng chỉ lập được 2 phương trình.