Bài 1 . Chứng minh rằng 8102 - 2102 chia hết cho 10 .
Bài 2 . Tìm hai chữ số tận cùng của 2100 .
Bài 3 . Tìm 2 chữ số tận cùng của 71991 .
Bài 4 . Tìm 4 chữ số tận cùng của số 51992 .
giúp mk vs các bạn !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. ta có:
220 ≡76220≡ dư 76(chia cho 100)
=>(220)5≡765≡76(220)5≡765≡ dư76 ( chia cho 100)
=> 2100≡762100≡ dư76(chia cho 100)
=>2100 có hai chữ tận cùng là 76
Bài 3:
a) Ta có: \(C=2+2^2+2^3+...+2^{99}+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(=31\cdot\left(2+2^6+...+2^{96}\right)⋮31\)(đpcm)
Bài 1:
Ta có: \(A=3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n\cdot9-2^n\cdot4+3^n-2^n\)
\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)
\(=10\left(3^n-2^{n-1}\right)⋮10\)
Vậy: A có chữ số tận cùng là 0
Bài 2:
Ta có: \(abcd=1000\cdot a+100\cdot b+10\cdot c+d\)
\(\Leftrightarrow abcd=1000\cdot a+96\cdot b+8c+2c+4b+d\)
\(\Leftrightarrow abcd=8\left(125a+12b+c\right)+\left(2c+4b+d\right)\)
mà \(8\left(125a+12b+c\right)⋮8\)
và \(2c+4b+d⋮8\)
nên \(abcd⋮8\)(đpcm)
5)A=2012^2013
A=2012^2012.2012
A=2012^(4.503).2012
A=(...6).2012=....72 (các số tự nhiên có chữ số tận cùng bằng 2,4,8 khi nâng lên lũy thừa 4n (n khác 0) đều có tận cùng là 6)
Vậy 2 chữ số tận cùng của A là 72
4)
20122013=20122012.2012=(20124)503.2012=(..1)503.2012=(....1).2012=....2
=>chữ số tận cùng của 20122013 là 2