K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2017

\(D=\dfrac{1}{2\left|x-1\right|+3}\)

\(\left|x-1\right|\ge0\Rightarrow2\left|x-1\right|\ge0\Rightarrow2\left|x-1\right|+3\ge3\)

\(D=\dfrac{1}{2\left|x-1\right|+3}\le\dfrac{1}{3}\)

Dấu "=" xảy ra khi:

\(x=1\)

Bài 1: 

Ta có: \(D=\sqrt{16x^4}-2x^2+1\)

\(=4x^2-2x^2+1\)

\(=2x^2+1\)

23 tháng 9 2019

                                                            Bài giải

Nếu đề là \(F=\frac{1}{\left|x\right|}+2017\) thì làm như sau :

* Tìm giá trị lớn nhất :

\(\Rightarrow\text{ Vì }\frac{1}{\left|x\right|}>0\text{ và F lớn nhất }\Rightarrow\text{ }\frac{1}{\left|x\right|}\text{ lớn nhất }\)

                                                  \(\Leftrightarrow\text{ }\left|x\right|\text{ bé nhất }\left(x\ne0\right)\)

\(\Rightarrow\text{ }\left|x\right|\text{ là số nguyên dương nhỏ nhất }\Rightarrow\text{ }\left|x\right|=1\text{ }\Rightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)

\(\Rightarrow\text{ }F=\frac{1}{\left|x\right|}+2017< 1+2017=2018\)

\(\text{Vậy }Max\text{ }F=2018\)

* Gía trị bé nhất không tìm được nha !

23 tháng 9 2019

                                                             Bài giải

Làm nốt trường hợp còn lại bạn Rain nói nha ! Vì đề bạn ghi không rõ mới làm thế này nha !  TH2 : \(F=\frac{1}{\left|x\right|+2017}\)

* Gía trị lớn nhất 

\(F=\frac{1}{\left|x\right|+2017}\text{ đạt giá trị lớn nhất khi }\left|x\right|+2017\text{ đạt GTNN }\)

Mà \(\left|x\right|\ge0\text{ }\Rightarrow\text{ }\left|x\right|+2017\ge2017\)

\(\text{ Vậy để }F\text{ lớn nhất thì }\left|x\right|+2017=2017\text{ Dấu " = " xảy ra khi }\left|x\right|=0\text{ }\Rightarrow\text{ }x=0\)

\(\text{Vậy }Max\text{ }F=\frac{1}{2017}\)

* Gía trị nhỏ nhất cũng không tìm được nha bạn !

26 tháng 12 2022

đợi tý

18 tháng 8 2023

Đã trả lời rồi còn độ tí đồ ngull

1:

a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)

Dấu = xảy ra khi x=0

b: \(B=\sqrt{x+8}-7>=-7\)

Dấu = xảy ra khi x=-8

22 tháng 8 2019

a) x ≠ 0 ,    x ≠     − 2  

b) Ta có D = x 2  - 2x - 2.

c) Chú ý D = - x 2 - 2x - 2 = - ( x   +   1 ) 2  - 1 ≤ -1. Từ đó tìm được giá trị lớn nhất của D = -1 khi x = -1.

15 tháng 10 2023

\(a,\\ A=25x^2-10x+11\\ =\left(5x\right)^2-2.5x.1+1^2+10\\ =\left(5x+1\right)^2+10\ge10\forall x\in R\\ Vậy:min_A=10.khi.5x+1=0\Leftrightarrow x=-\dfrac{1}{5}\\ B=\left(x-3\right)^2+\left(11-x\right)^2\\ =\left(x^2-6x+9\right)+\left(121-22x+x^2\right)\\ =x^2+x^2-6x-22x+9+121=2x^2-28x+130\\ =2\left(x^2-14x+49\right)+32\\ =2\left(x-7\right)^2+32\\ Vì:2\left(x-7\right)^2\ge0\forall x\in R\\ Nên:2\left(x-7\right)^2+32\ge32\forall x\in R\\ Vậy:min_B=32.khi.\left(x-7\right)=0\Leftrightarrow x=7\\Tương.tự.cho.biểu.thức.C\)

15 tháng 10 2023

b:

\(D=-25x^2+10x-1-10\)

\(=-\left(25x^2-10x+1\right)-10\)

\(=-\left(5x-1\right)^2-10< =-10\)

Dấu = xảy ra khi x=1/5

\(E=-9x^2-6x-1+20\)

\(=-\left(9x^2+6x+1\right)+20\)

\(=-\left(3x+1\right)^2+20< =20\)

Dấu = xảy ra khi x=-1/3

\(F=-x^2+2x-1+1\)

\(=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1< =1\)

Dấu = xảy ra khi x=1

Bài 2: 

a) Ta có: \(\left|2x-5\right|\ge0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)