K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2017

\(A=1+\dfrac{3}{2^3}+\dfrac{4}{2^4}+\dfrac{5}{2^5}+...+\dfrac{100}{2^{100}}\)

\(2A=2\left(1+\dfrac{3}{2^3}+\dfrac{4}{2^4}+\dfrac{5}{2^5}+...+\dfrac{100}{2^{100}}\right)\)

\(2A=2+\dfrac{3}{2^2}+\dfrac{4}{2^3}+\dfrac{5}{2^4}+....+\dfrac{100}{2^{99}}\)

\(2A-A=\left(2+\dfrac{3}{2^2}+\dfrac{4}{2^3}+\dfrac{5}{2^4}+...+\dfrac{100}{2^{99}}\right)-\left(1+\dfrac{3}{2^3}+\dfrac{4}{2^4}+\dfrac{5}{2^5}+...+\dfrac{100}{2^{100}}\right)\)\(A=2+\dfrac{3}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{99}}-\dfrac{100}{2^{100}}\)

\(A=\dfrac{11}{4}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{99}}-\dfrac{100}{2^{100}}\)

\(A=\dfrac{11}{4}+\dfrac{1}{2^3}-\dfrac{1}{2^{99}}-\dfrac{100}{2^{100}}\)

29 tháng 8 2017

Đặt \(D=1+\dfrac{3}{2^3}+\dfrac{4}{2^4}+...+\dfrac{100}{2^{100}}\)

\(2D=2+\dfrac{3}{2^2}+\dfrac{4}{2^3}+...+\dfrac{100}{2^{99}}\)

\(2D-D=\left(2+\dfrac{3}{2^2}+\dfrac{4}{2^3}+...+\dfrac{100}{2^{99}}\right)-\left(1+\dfrac{3}{2^3}+\dfrac{4}{2^4}+...+\dfrac{100}{2^{100}}\right)\)

\(D=2+\dfrac{3}{2^2}+\dfrac{1}{2^3}+....+\dfrac{1}{2^{99}}-\dfrac{100}{2^{100}}\)

\(D=\dfrac{11}{4}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{99}}-\dfrac{100}{2^{100}}\)

\(D=\dfrac{11}{4}+\dfrac{1}{2^3}-\dfrac{1}{2^{99}}-\dfrac{100}{2^{100}}\)

AH
Akai Haruma
Giáo viên
5 tháng 7 2021

Lời giải:

Gọi phân số vế trái là $A$. Gọi tử số là $T$. Xét mẫu số:
\(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)

\(=1-\frac{1}{2}+1-\frac{1}{3}+1-\frac{1}{4}+....+1-\frac{1}{100}\)

\(=99-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=100-(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100})\)

\(=\frac{1}{2}\left[200-(3+\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100})\right]=\frac{1}{2}T\)

$\Rightarrow A=\frac{T}{\frac{1}{2}T}=2$ 

Ta có đpcm.

Giải:

Vì \(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}=2\) nên phần tử gấp 2 lần phần mẫu

Ta có:

\(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}\)  

\(=\dfrac{2.\left[100-\left(\dfrac{3}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{100}\right)\right]}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}\)

\(=\dfrac{2.\left[\left(2-\dfrac{3}{2}\right)+\left(1-\dfrac{1}{3}\right)+\left(1-\dfrac{1}{4}\right)+\left(1-\dfrac{1}{5}\right)+...+\left(1-\dfrac{1}{100}\right)\right]}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}\) 

\(=\dfrac{2.\left(\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+\dfrac{4}{5}+...+\dfrac{99}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}\) 

\(=2\) 

Vậy \(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}=2\left(đpcm\right)\) 

Chúc bạn học tốt!

14 tháng 1 2021

\(2A=2+\dfrac{3}{2^2}+\dfrac{4}{2^3}+\dfrac{5}{2^4}+...+\dfrac{100}{2^{99}}\)

=> \(2A-A=A=1+\dfrac{3}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+....+\dfrac{1}{2^{99}}-\dfrac{100}{2^{100}}\)

Đặt \(B=\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{99}}\)

=> \(2B=\dfrac{1}{2^2}+\dfrac{1}{2^3}+....+\dfrac{1}{2^{98}}\)

=> \(B=\dfrac{1}{2^2}-\dfrac{1}{2^{99}}\)

=> \(A=1+\dfrac{3}{2^2}+\dfrac{1}{2^2}-\dfrac{100}{2^{100}}-\dfrac{1}{2^{99}}\)

=> \(A=2-\dfrac{102}{2^{100}}< 2\)

26 tháng 4 2017

Ta có :

\(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{3}{4}+\dfrac{2}{5}+............+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+.................+\dfrac{99}{100}}\)

\(=\dfrac{200-2-\left(\dfrac{2}{2}+\dfrac{2}{3}+\dfrac{2}{4}+.............+\dfrac{2}{100}\right)}{1-\dfrac{1}{2}+1-\dfrac{1}{3}+............+1-\dfrac{1}{100}}\)

\(=\dfrac{198-\left(\dfrac{2}{2}+\dfrac{2}{3}+...........+\dfrac{2}{100}\right)}{\left(1+1+.........+1\right)-\left(\dfrac{1}{2}+\dfrac{1}{3}+........+\dfrac{1}{100}\right)}\)

\(=\dfrac{2.\left[99-\left(\dfrac{1}{2}+\dfrac{1}{3}+..........+\dfrac{1}{100}\right)\right]}{99-\left(\dfrac{1}{2}+\dfrac{1}{3}+.........+\dfrac{1}{100}\right)}\)

\(=2\)

Vậy \(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+..........+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+........+\dfrac{99}{100}}=2\rightarrowđpcm\)

14 tháng 4 2018

đpcm là j ak

31 tháng 10 2023

a: \(\dfrac{4^5\cdot9^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot20}\)

\(=\dfrac{2^{10}\cdot3^8-2\cdot2^9\cdot3^9}{2^{10}\cdot3^8+2^8\cdot3^8\cdot2^2\cdot5}\)

\(=\dfrac{2^{10}\cdot3^8-2^{10}\cdot3^9}{2^{10}\cdot3^8+2^{10}\cdot3^8\cdot5}\)

\(=\dfrac{2^{10}\cdot3^8\left(1-3\right)}{2^{10}\cdot3^8\left(1+5\right)}=\dfrac{-2}{6}=-\dfrac{1}{3}\)

21 tháng 4 2018

\(A=1+\dfrac{3}{2^3}+\dfrac{4}{2^4}+...+\dfrac{100}{2^{100}}\)

\(\dfrac{1}{2}\cdot A=\dfrac{1}{2}+\dfrac{3}{2^4}+...+\dfrac{100}{2^{101}}\)

\(A-\dfrac{A}{2}=\dfrac{1}{2A}=\dfrac{1}{2}+\dfrac{3}{2^3}+...+\dfrac{100}{2^{101}}\)

\(\left[\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\right]-\dfrac{100}{2^{101}}\) (do 3/2^3=1/2^2+1/2^3)

\(\left[1-\left(\dfrac{1}{2}\right)^{101}\right]\left(1-\dfrac{1}{2}\right)-\dfrac{100}{2^{101}}\)

\(\left(\dfrac{2^{101-1}}{2^{100}}\right)-\dfrac{100}{2^{101}}\)

\(\Rightarrow A=\dfrac{\dfrac{\left(2^{101-1}\right)}{2^{99}-100}}{2^{100}}\)

22 tháng 5 2017

Giải:

\(A=1+\dfrac{3}{2^3}+\dfrac{4}{2^4}+\dfrac{5}{2^5}+...+\dfrac{100}{2^{100}}\)

\(\dfrac{1}{2}A=\dfrac{1}{2}+\dfrac{3}{2^4}+\dfrac{4}{2^5}+...+\dfrac{99}{2^{100}}+\dfrac{100}{2^{101}}\)

\(A-\dfrac{A}{2}=\dfrac{1}{2A}=\dfrac{1}{2}+\dfrac{3}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{100}}-\dfrac{100}{2^{101}}\)

\(=\left[\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\right]-\dfrac{100}{2^{101}}\) ( Vì \(\dfrac{3}{2^3}=\dfrac{1}{2^2}+\dfrac{1}{2^3}\) )

\(=\dfrac{\left[1-\left(\dfrac{1}{2}\right)^{101}\right]}{\left(1-\dfrac{1}{2}\right)}-\dfrac{100}{2^{101}}\)

\(=\dfrac{\left(2^{101}-1\right)}{2^{100}}-\dfrac{100}{2^{101}}\)

\(\Rightarrow A=\dfrac{\left(2^{101}-1\right)}{2^{99}}-\dfrac{100}{2^{100}}\)

17 tháng 4 2018

2A =2+\(\frac{3}{2^2}\)+\(\frac{4}{2^3}\)+\(\frac{5}{2^4}\)+.....+\(\frac{100}{2^{99}}\)

\(\Rightarrow\)A=2A-A=1+\(\frac{3}{4}\)\(\frac{1}{2^3}\)+\(\frac{1}{2^4}\)+.....+\(\frac{1}{2^{99}}\)-\(\frac{100}{2^{100}}\)

\(\Rightarrow\)2A=2+\(\frac{3}{2}\)+\(\frac{1}{2^2}\)+\(\frac{1}{2^3}\)+....+\(\frac{1}{2^{98}}\)-\(\frac{100}{2^{99}}\)

\(\Rightarrow\)A=2A-A=1+\(\frac{3}{4}\)+\(\frac{1}{4}\)-\(\frac{101}{2^{99}}\)+\(\frac{100}{2^{100}}\)=2-\(\frac{51}{2^{99}}\)

20 tháng 3 2017

A=1+B

B=\(\Sigma\left(\dfrac{x}{2^x}\right)\)( cho x chạy từ 3 đến 100) =1

=> A=1+B=1+1=2ok