K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2017

Nhấn vào đây: Câu hỏi của Trần Thị Đào - Toán lớp 7 | Học trực tuyến

A B D C x t y

28 tháng 8 2017

a) Nối A với M

Xét tg ABM và tg ACM có:

AM chung

AB = AC ( gt )

BM = MC ( gt )

=> tg ABM = tg ACM (c.c.c)

=> B = C ( c.t.ứng)

b) tg ABM = tg ACM ( cmt )

=> M1 = M2 mà M1 + M2 = 180o

=> M1 = M2 = 90o

24 tháng 10 2017

mk ko bt 123

16 tháng 12 2021

ko bt thì đừng có tl linh tinh

30 tháng 10 2016

Bạn tự vẽ hình nhé !

\(\Delta AMB,\Delta AMC\)có chung AM , AB = AC , MB = MC (M là trung điểm BC) =>\(\Delta AMB=\Delta AMC\left(c.c.c\right)\)

\(\Rightarrow\widehat{ABM}=\widehat{ACM}\)(2 góc tương ứng) ;\(\frac{\widehat{AMB}}{1}=\frac{\widehat{AMC}}{1}=\frac{\widehat{AMB}+\widehat{AMC}}{1+1}=\frac{180^0}{2}=90^0\Rightarrow\widehat{AMB}=\widehat{AMC}=90^0\)

14 tháng 7 2017

a) Xét 2 tam giác ABD và ADC có : 

AB = AC (gt)

Góc BAD = Góc DAC

AD chung 

=> : BAD = ADC (c.g.c). Vậy Góc ABC = Góc ACB.

b) Từ chứng minh trên ta có : Góc ADC = Góc ADB. Mà 2 góc đó lại kề bù với nhau : => Góc ADC = Góc ADB = 90 độ

2 tháng 2 2021

a. Xét ΔAMB và ΔAMC có

AM chung

MB=MC ( do M là trung điểm BC )

AB=AC

⇒ ΔAMB = ΔAMC (ccc)

b. Xét ΔABC có AB=AC

⇒ ΔABC cân AMà M là trung điểm BC 

⇒AM là đường trung tuyến

⇒ AM đồng thời là đường phân giác

⇒ ∠BAM=∠CAM

Mà ME//AC ⇒ ∠EMA=∠CAM ( so le trong )

⇒∠BAM=∠EMA

c. Do ΔABC cân A và AE=AF

⇒EB=FC và ∠EBM=∠FCM

Xét ΔEBM và ΔFCM có

BM=MC

EB=FC

∠EBM=∠FCM

 

⇒ ΔEBM = ΔFCM (cgc)

7 tháng 3 2017

ai làm ơn giúp mk với , mốt là mk kiểm tra rồi , giúp mk với

Bài 6: Cho ∠xAy, lấy điểm B trên tia Ax, điểm D trên tia Ay sao cho AB = AD. Trên tia Bx lấy điểm E, trên tia Dy lấy điểm C sao cho BE = DC. Chứng minh ΔABC = ΔADE.Bài 7: Cho đoạn thẳng AB có M là trung điểm. Qua M kẻ đường thẳng d vuông góc với AB. Lấy C ∈ d (C khác M). Chứng minh CM là tia phân giác của ∠ACB.Bài 8: Cho ΔABC có AB = AC, phân giác AM (M ∈ BC).Chứng minh: a) ΔABM = ΔACM. b) M là trung điểm của BC...
Đọc tiếp

Bài 6: Cho ∠xAy, lấy điểm B trên tia Ax, điểm D trên tia Ay sao cho AB = AD. Trên tia Bx lấy điểm E, trên tia Dy lấy điểm C sao cho BE = DC. Chứng minh ΔABC = ΔADE.
Bài 7: Cho đoạn thẳng AB có M là trung điểm. Qua M kẻ đường thẳng d vuông góc với AB. Lấy C ∈ d (C khác M). Chứng minh CM là tia phân giác của ∠ACB.
Bài 8: Cho ΔABC có AB = AC, phân giác AM (M ∈ BC).
Chứng minh: a) ΔABM = ΔACM. b) M là trung điểm của BC và AM ⊥ BC.
Bài 9: Cho ΔABC, trên nửa mặt phẳng bờ AC không chứa điểm B, lấy điểm D sao cho AD // BC và AD = BC. Chứng minh: a) ΔABC = ΔCDA. b) AB // CD và ΔABD = ΔCDB.
Bài 10: Cho ΔABC có ∠A = 90 độ, trên cạnh BC lấy điểm E sao cho BA = BE. Tia phân giác ∠B cắt AC ở D.
a) Chứng minh: ΔABD = ΔEBD. b) Chứng minh: DA = DE. c) Tính số đo ∠BED.
Bài 11: Cho ΔABD, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a) ΔABM = ΔECM. b) AB = CE và  AC // BE.
(* Chú ý: Δ là tam giác, ∠ là góc, ⊥ là vuông góc, // là song song.)

0