Tìm max, min: \(K=\dfrac{3-4x}{x^2+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{4x^2+2xy-\left(x^2+y^2\right)}{2xy-2y^2+3\left(x^2+y^2\right)}=\dfrac{3x^2+2xy-y^2}{3x^2+2xy+y^2}\)
Biểu thức này không tồn tại max mà chỉ tồn tại min
\(P=\dfrac{-2\left(3x^2+2xy+y^2\right)+9x^2+6xy+y^2}{3x^2+2xy+y^2}=-2+\dfrac{\left(3x+y\right)^2}{2x^2+\left(x+y\right)^2}\ge-2\)
GTNN :
\(K=\frac{3-4x}{x^2+1}=\frac{-x^2-1+x^2-4x+4}{x^2+1}=\frac{\left(x^2+1\right)+\left(x-2\right)^2}{x^2+1}=1+\frac{\left(x-2\right)^2}{x^2+1}\ge1\)
K đạt MIN là 1 khi x = - 2
GTLN :
\(K=\frac{3-4x}{x^2+1}=\frac{\left(4x^2+4\right)-\left(4x^2+4x+1\right)}{x^2+1}=\frac{4\left(x^2+1\right)-\left(2x+1\right)^2}{x^2+1}=4-\frac{\left(2x+1\right)^2}{x^2+1}\le4\)
Đạt GTLN là 4 tại x = - 1/2
Lời giải:
\(\bullet\)Nếu \(x\geq \frac{1}{2}\Rightarrow K=x-\frac{1}{2}+\frac{3}{4}-x=\frac{1}{4}\)
\(\bullet\) Nếu \(x<\frac{1}{2}\Rightarrow K=\frac{1}{2}-x+\frac{3}{4}-x=\frac{5}{4}-2x\)
Vì \(x<\frac{1}{2}\Rightarrow \frac{5}{4}-2x>\frac{5}{4}-1=\frac{1}{4}\)
Do đó \(K_{\min}=\frac{1}{4}\)
Hàm hiển nhiên không có max. Xét hàm \(\frac{5}{4}-2x\), với giá trị của \(x<\frac{1}{2}\), càng nhỏ thì $K$ càng lớn đến dương vô cùng.
TH1:Nếu x-\(\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)
\(\Rightarrow\)K=\(\left|\dfrac{1}{2}-\dfrac{1}{2}\right|+\dfrac{3}{4}-\dfrac{1}{2}=\dfrac{1}{4}\)
TH2:Nếu x-\(\dfrac{1}{2}>0\Rightarrow x>\dfrac{1}{2}\Rightarrow\left|x-\dfrac{1}{2}\right|=x-\dfrac{1}{2}\)
\(\Rightarrow K=x-\dfrac{1}{2}+\dfrac{3}{4}-x=\dfrac{1}{4}\)
TH3:Nếu \(x-\dfrac{1}{2}< 0\Rightarrow x< \dfrac{1}{2}\Rightarrow\left|x-\dfrac{1}{2}\right|=\dfrac{1}{2}-x\)
\(\Rightarrow K=\dfrac{1}{2}-x+\dfrac{3}{4}-x\)
\(\Rightarrow K=\dfrac{5}{4}-2x< \dfrac{1}{4}\)
Vậy Max K=\(\dfrac{1}{4}\Leftrightarrow x\ge\dfrac{1}{2}\)
|x-1/2| =x-1/2 khi x >= 1/2
=> Min K =1/4 khi x>=1/2
không có max
Mình giải phương pháp tìm miền giá trị
\(A=\dfrac{4x+3}{x^2+1}\)
\(\Leftrightarrow Ax^2-4x+A-3=0\)(1)
+)Xét A=0\(\Rightarrow-4x-3=0\Leftrightarrow x=-\dfrac{3}{4}\)
+)Xét \(A\ne0\)
=>Để pt(1) có nghiệm thì \(\Delta=16-4A\left(A-3\right)\ge0\)
\(\Leftrightarrow4-A\left(A-3\right)\ge0\)
\(\Leftrightarrow-A^2+3A+4\ge0\)
\(\Leftrightarrow\left(A-4\right)\left(-A-1\right)\ge0\)
\(\Leftrightarrow-1\le A\le4\)
Vậy \(MINA=-1\Leftrightarrow\)x=-2
\(MAX=4\Leftrightarrow x=\)\(\dfrac{1}{2}\)
\(D=\frac{4x+3}{x^2+1}\)
Min D :
\(D=\frac{x^2+4x+4-x^2-1}{x^2+1}\)
\(=\frac{\left(x+2\right)^2-\left(x^2+1\right)}{x^2+1}=\frac{\left(x+2\right)^2}{x^2+1}-1\)
Ta thấy : \(\frac{\left(x+2\right)^2}{x^2+1}\ge0\forall x\)
\(\Rightarrow D\Rightarrow\frac{\left(x+2\right)^2}{x^2+1}-1\ge-1\)
Dấu "=" xảy ra khi \(x+2=0\Leftrightarrow x=-2\)
Max D :
\(D=\frac{4x+3}{x^2+1}=\frac{-4x^2+4x-1+4x^2+4}{x^2+1}\)
\(=\frac{-\left(2x-1\right)^2+4\left(x^2+1\right)}{x^2+1}\)
\(=\frac{-\left(2x-1\right)^2}{x^2+1}+4\)
Ta thấy : \(\frac{-\left(2x-1\right)^2}{x^2+1}\le0\forall x\)
\(\Rightarrow D=\frac{-\left(2x-1\right)^2}{x^2+1}+4\le4\)
Dấu "=" xảy ra khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\)
a)
\(A=\dfrac{2x^2-16x+41}{x^2-8x+22}=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}\)
\(A-2=-\dfrac{3}{x^2-8x+22}=-\dfrac{3}{\left(x-4\right)^2+6}\ge-\dfrac{3}{6}=-\dfrac{1}{2}\)
\(A\ge\dfrac{3}{2}\) khi x =4
\(K=\dfrac{3-4x}{x^2+1}\)
\(\Leftrightarrow Kx^2+1=3-4x\)
\(\Leftrightarrow Kx^2+4x+K-3=0\)
Để phương thức trên tồn tại \(x\) thì:
\(\text{4-K.(K-3)=K^2}+3K+4\ge0\)
\(\Leftrightarrow K^2-3.K-4\le0\)
\(\Leftrightarrow\left(K+1\right).\left(K-4\right)\le0\)
\(\Leftrightarrow-1\le K\le4\)
Vậy \(MIN\left(K\right)=-1\)
\(MAX\left(K\right)=4\)
chet tui lon roi ma thôi xem như bo thi cho ba haha