K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2020

\(D=\frac{4x+3}{x^2+1}\)

Min D : 

\(D=\frac{x^2+4x+4-x^2-1}{x^2+1}\)

\(=\frac{\left(x+2\right)^2-\left(x^2+1\right)}{x^2+1}=\frac{\left(x+2\right)^2}{x^2+1}-1\)

Ta thấy : \(\frac{\left(x+2\right)^2}{x^2+1}\ge0\forall x\)

\(\Rightarrow D\Rightarrow\frac{\left(x+2\right)^2}{x^2+1}-1\ge-1\)

Dấu "=" xảy ra khi \(x+2=0\Leftrightarrow x=-2\)

Max D : 

\(D=\frac{4x+3}{x^2+1}=\frac{-4x^2+4x-1+4x^2+4}{x^2+1}\)

\(=\frac{-\left(2x-1\right)^2+4\left(x^2+1\right)}{x^2+1}\)

\(=\frac{-\left(2x-1\right)^2}{x^2+1}+4\)

Ta thấy : \(\frac{-\left(2x-1\right)^2}{x^2+1}\le0\forall x\)

\(\Rightarrow D=\frac{-\left(2x-1\right)^2}{x^2+1}+4\le4\)

Dấu "=" xảy ra khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\)

22 tháng 5 2019

\(D=\frac{4x+3}{x^2+1}\Leftrightarrow D\left(x^2+1\right)=4x+3\)

\(\Leftrightarrow Dx^2+D-4x-3=0\)

\(\Leftrightarrow Dx^2-4x+\left(D-3\right)=0\)

\(\Delta'=4-D\left(D-3\right)\ge0\Rightarrow4-D^2+3D\ge0\)

\(\Rightarrow\left(4-D\right)\left(D+1\right)\ge0\Rightarrow-1\le D\le4\)

22 tháng 5 2019

Lớp 7 chưa biết (áp dụng) bđt de-ta ạ Ribi Nkok Ngok

23 tháng 12 2017

 A = (4x + 3)/(x² + 1) 

CM bất đẳng thức phụ : (a² + b²)(c² + d²) ≥ (ac + bd)² (1) 

Đây là bất đẳng thức bunhiacopxki , nếu em chưa biết thì anh CM luôn : 

(1) <=> a²c² + a²d² + b²c² + b²d² ≥ a²c² + 2abcd + b²d² 

<=> a²d² - 2.ad.bc + b²c² ≥ 0 

<=> (ad - bc)² ≥ 0 --> luôn đúng --> bđt (1) được CM 

- Dấu " = " xảy ra <=> ad = bc <=> a/c = b/d 

- Áp dụng bđt (1) ta có : (4.x + 3.1)² ≤ (4² + 3²)(x² + 1²) 

<=> (4x + 3)² ≤ 25(x² + 1) 

<=> -5.√(x² + 1) ≤ 4x + 3 ≤ 5.√(x² + 1) 

<=> -5/√(x² + 1) ≤ A = (4x + 3)/(x² + 1) ≤ 5/√(x² + 1) 
 

23 tháng 12 2017

mà anh ơi kết quả thầy em cho là -1 <=A<=4

18 tháng 1 2017

\(A_{min}=8-\frac{25}{4}\) khi x=5/2

Bmin=xem lại đề đúng như đề Bmin=5 khi x=0

C=8+25-(2x+5)^2

Cmax=8+25 khi x=-5/2 

Dmax=9 khi x=0

31 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

23 tháng 12 2015

đúng đó trình bày lại đi xấu thật nhưng mik trình bày xấu hơn

18 tháng 1 2017

Cụ thể mức nào nhỉ tất cả dự trên HĐT \(\left(a+-b\right)^2=a^2+-2ab+b^2\)

cụ thể con A

\(A=x^2-2.\frac{5}{2}x+\left(\frac{5^2}{2^2}\right)+8-\frac{25}{4}\) đã thêm 25/4 =b vào phần đầu => trừ đi 

\(A=\left(x-\frac{5}{2}\right)^2+8-\frac{25}{4}=\left(x-\frac{5}{2}\right)^2+\frac{7}{4}\)

\(\left(x-\frac{5}{2}\right)^2\ge0\Rightarrow A\ge\frac{7}{4}\)đẳng thức khi x-5/2=0=> x=5/2

18 tháng 1 2017

A=(x-5/2)^2+8-25/4=> Amin=7/4 khi x=5/2

B --> xem lại theo đề Bmin =5 khi x=0

C =8+25-(2x+5)^2=> C max=32 khi x=-5/2

D max=9 khi x=0