K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=n^3-n-6n\)

\(=n\left(n-1\right)\left(n+1\right)-6n\)

Vì n;n-1;n+1 là ba số nguyên liên tiếp

nên \(n\left(n-1\right)\left(n+1\right)⋮3!=6\)

hay A chia hết cho 6

23 tháng 9 2020

Có :

\(A=n^3-7n\)

\(=\left(n^3-n\right)-6n\)

\(=n.\left(n^2-1\right)-6n\)

\(=\left(n+1\right)n\left(n-1\right)-6n⋮6\)

30 tháng 9 2020

\(A=n^3-7n\)

\(=n^3-n-6n\)

\(=\left(n^3-n\right)-6n\)

\(=n\left(n^2-1\right)-6n\)

\(=\left(n+1\right)n\left(n-1\right)-6n⋮6\)

\(\Rightarrow A⋮6\left(dpcm\right)\)

26 tháng 10 2022

\(A=\left(n-2\right)\left(n-3\right)\left(n+1\right)\left(2n+1\right)\)

Vì n-2;n-3 là hai số liên tiếp

nên (n-2)(n-3) chia hết cho 2

=>A chia hết cho 2

TH1: n=3k

=>n-3=3k-3 chia hết cho 3

TH2: n=3k+1

=>2n+1=6k+2+1=6k+3 chia hết cho 3

TH3: n=3k+2

=>n+1=3k+3 chia hết cho 3

=>A chia hết cho 6

4 tháng 2 2017

\(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\\ \) luôn chia hết cho 3

\(\Rightarrow n^3-n+2\) không chia hết cho 3=> không chia hết cho 6 => dpcm

19 tháng 8 2017

Vì A là tích ba nguyên liên tiếp nên chia hết cho 2 và 3, mà 2 và 3 là số nguyên tố cùng nhau nên chia hết cho 6.

Vì n;n-1;n-2 là ba số nguyên liên tiếp

nên \(n\left(n-1\right)\left(n-2\right)⋮3!\)

hay \(A⋮6\)