Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm M để 3 đường thẳng sau đồng quy
(d1):y=2x (d2):y=-x-3 (d3):y=mx+5
Phương trình hoành độ giao điểm (\(\left(d_1\right)\)và \(\left(d_2\right)\)là:
\(2x=-x-3\)
\(\Leftrightarrow x=-1\)
suy ra \(y=-2\).
Vậy tọa độ giao điểm \(\left(d_1\right)\)và \(\left(d_2\right)\)là \(A\left(-1,-2\right)\).
Để ba đường đã cho đồng quy thì \(A\in\left(d_3\right)\)suy ra
\(-2=-m+5\Leftrightarrow m=7\).
Phương trình hoành độ giao điểm (\(\left(d_1\right)\)và \(\left(d_2\right)\)là:
\(2x=-x-3\)
\(\Leftrightarrow x=-1\)
suy ra \(y=-2\).
Vậy tọa độ giao điểm \(\left(d_1\right)\)và \(\left(d_2\right)\)là \(A\left(-1,-2\right)\).
Để ba đường đã cho đồng quy thì \(A\in\left(d_3\right)\)suy ra
\(-2=-m+5\Leftrightarrow m=7\).