Cho góc xOy nhọn điểm M nằm trong xOy từ M kẻ đường thẳng song song với Ox cắt Oy tại B kẻ đường thẳng song song với Oy cắt Ox tại a a chứng minh ab x am = MB b từ O kẻ đường thẳng vuông góc với OA cắt AB tại K từ M kẻ đường thẳng song song với o k cắt Oy tại D Chứng minh MD vuông góc MK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a .
Xét ΔABO;ΔBAMΔABO;ΔBAM có :
ˆOAB=ˆMBA(slt)AB(chung)ˆOBA=ˆMAB(slt)⇒ΔAOB=ΔBMA(g−c−g)⇒AM=BO;OA=BM
A .
Vì OA // MB ( giả thuyết )
=> Góc AOM = Góc OMB ( 1 )
Vì AM = OB ( giả thuyết )
=> Góc AMO = Góc MOB ( 2 )
Từ ( 1 ) và ( 2 )
=> Góc AOM = Góc MOB ; Góc AMO = Góc BMO
Vậy hình tam giác AMO = Hình tam giác BMO ( góc - cạnh - góc )
= > AO = OB ; MA = MB ( 2 cạnh tương ứng )
a) Ta có :
O1 = O2
Vì AM // Oy
=> O1 = O2 = M1 = M2 (cặp góc sole )
Xét 2 tam giác OAM và tam giác OBM , có :
O1 = O2
OM là cạnh chung => tam giác OAM = tam giác OBM (g.c.g)
M1 = M2
=> OA = OB ; MA = MB
b) Xét 2 tam giác vuông OHM và OKM có :
O1 = O2
OM chung
=> tam giác OHM = tam giác OKM (theo trường hợp Cạnh huyền góc nhọn)
=> MH = MK
Xét tứ giác OAMB có
OA//MB
OB//MA
=>OAMB là hình bình hành
=>MA=OB và MB=OA