Tìm x, biết:
\(x^3-6x^2-x+30=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x3- 6x3 -x + 30 = 0
x3 + 2x2- 8x2- 16x + 15x + 30 = 0
x2 ( x + 2 ) - 8x ( x + 2 ) + 15 ( x + 2 ) = 0
( x + 2 )( x2 - 8x + 15 ) = 0
x + 2 = 0 hoặc x2 - 8x + 15 = 0
x = - 2 hoặc ( x - 4 )2 - 1 = 0
x = - 2 hoặc ( x - 4 - 1 ) ( x - 4 + 1 ) = 0
x = - 2 hoặcx = 5 hoặc x = 3
d) \(4x^2-9-x\left(2x-3\right)=0\)
\(\Leftrightarrow4x^2-9-2x^2+3x=0\)
\(\Leftrightarrow2x^2+3x-9=0\)
\(\Delta=3^2-4.2.\left(-9\right)=9+72=81\)
Vậy pt có 2 nghiệm phân biệt
\(x_1=\frac{-3+\sqrt{81}}{4}=\frac{-3}{2}\);\(x_1=\frac{-3-\sqrt{81}}{4}=-3\)
e) \(x^3+5x^2+9x=-45\)
\(\Leftrightarrow x^3+5x^2+9x+45=0\)
\(\Leftrightarrow x^2\left(x+5\right)+9\left(x+5\right)=0\)
\(\Leftrightarrow\left(x^2+9\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+9=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm3i\\x=-5\end{cases}}\)
a: Ta có: \(x\left(x-3\right)-x^2+5=0\)
\(\Leftrightarrow-3x+5=0\)
hay \(x=\dfrac{5}{3}\)
b: Ta có: \(x^2-6x=0\)
\(\Leftrightarrow x\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
1) 14x-8x=10+5
x(14-8)=15
x6=15
x=15/6
2)5x-3x=30-15
2x=15
x=15/2
3)làm tương tự
a,x2+6x-7=0
=>x2+7x-x-7=0
=>(x^2+7x)-(x+7)=0
=>x(x+7)-(x+7)=0 =>(x+7)(x-1)=0
=>\(\orbr{\begin{cases}x+7=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-7\\x=1\end{cases}}}\)
b, x^3-2x^2-5x+6=0
=>x(x^2-2x-5+6)=0
=>x(x^2-2x+1)=0\(^{\orbr{\begin{cases}x=0\\\left(x-1^2\right)=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
c, 2x^2-5x+3=0
=>2x^2-2x-3x+3=0
\(x^3-19x-30=0\)
\(\Rightarrow x^3+5x^2+6x-5x^2-25x-30=0\)
\(\Rightarrow\left(x-5\right)\left(x^2+5x+6\right)=0\)
\(\Rightarrow\left(x-5\right)\left(x^2+2x+3x+6\right)=0\)
\(\Rightarrow\left(x-5\right)[x\left(x+2\right)+3\left(x+2\right)]=0\)
\(\Rightarrow\left(x-5\right)\left(x+3\right)\left(x+2\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-5=0\\x+3=0\\x+2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=5\\x=-3\\x=-2\end{cases}}\)
\(x^3-6x^2-x+30=0\)
\(\Leftrightarrow x^3-5x^2-x^2+5x-6x+30=0\)
\(\Leftrightarrow x^2\left(x-5\right)-x\left(x-5\right)-6\left(x-5\right)=0\)
\(\Leftrightarrow\left(x^2-x-6\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left(x^2-3x+2x-6\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[x\left(x-3\right)+2\left(x-3\right)\right]\left(x-5\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)\left(x-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\\x=5\end{matrix}\right.\)
Vậy...
\(x^3-6x^2-x+30=0\)
\(x^3+2x^2-8x^2-16x+15x+30=0\)
\(\left(x^2+2x^2\right)-\left(8x^2+16x\right)+\left(15x+30\right)=0\)
\(x^2\left(x+2\right)-8x\left(x+2\right)+15\left(x+2\right)=0\)
\(\left(x+2\right)\left(x^2-8x+15\right)=0\)
TH1: \(x+2=0\Leftrightarrow x=-2\) (1)
TH2: \(x^2-8x+15=0\)
\(x^2-8x=-15\)
\(x^2-2x.4+16=-15+16\)
\(\left(x-4\right)^2=1\)
\(\Rightarrow\left[{}\begin{matrix}x-4=1\\x-4=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=3\end{matrix}\right.\left(2\right)\)
Từ (1) và (2) \(\Rightarrow x\in\left\{-2;5;3\right\}\)