Cho tam giác ABC. M là trung điểm của BC , I là trung điểm của AM. Tia BI cắt AC ở D. Qua M kẻ đường thẳng // với BD cắt AC ở E. Cm
a, AD = DE = EC
b, ID = 1/4 BD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
a: Xét ΔAME có
I là trung điểm của AM
ID//ME
Do đó: Dlà trung điểm của AE
=>AD=DE(1)
Xét ΔBDC có
M làz trung điểm của BC
ME//BD
Do đó: E là trung điểm của CD
=>DE=EC(2)
Từ (1) và (2) suy ra AD=DE=EC
b: Xét ΔAME có ID//ME
nên ID/ME=AD/AE
=>ID/ME=1/2
=>hay ME=2ID
Xét ΔBDC có ME//BD
nên ME/BD=CE/CD
=>ME/BD=1/2
=>ME=1/2BD
=>2ID=1/2BD
hay DI=1/4BD
a) ta có tam giác abc cân tại A suy ra B=C3
C3=C1(2 góc đđ) suy ra B=C1
xét 2 tam giác vuông MBD và NCE
B=C1(cmt)
BD=CE(gt)
D1=E=90 độ
suy ra tam giácMBD=NCE(g.c.g)
suy ra MD=NE
Bài 1:
a)+ Vì AB = ACNÊN
==>Tam giác ABC cân tại A
==>góc ABI = góc ACI
+ Xét tam giác ABI và tam giác ACI có:
AI là cạch chung
AB = AC(gt)
BI = IC ( I là trung điểm của BC)
Vậy tam giác ABI = tam giác ACI (c.c.c)
==> góc BAI = góc CAI ( 2 góc tương ứng )
==>AI là tia phân giác của góc BAC
b)
Xét tam giác BAM và tam giác BAN có:
AB = AC (gt)
góc B = góc C (cmt)
BM = CN ( gt )
Vậy tam giác BAM = tam giác CAN (c.g.c)
==> AM = AN (2 cạnh tương ứng)
c)
vì tam giác BAI = tam giác CAI (cmt)
==>góc AIB = góc AIC (2 góc tương ứng)
Mà góc AIB+ góc AIC = 180độ ( kề bù)
nên AIB=AIC=180:2=90
==>AI vuông góc với BC
Lời giải:
a. Áp dụng tính chất tia phân giác đối với tam giác $AMB, AMC$ thì:
$\frac{AD}{DB}=\frac{AM}{MB}$
$\frac{AE}{EC}=\frac{AM}{MC}$
Mà $MB=MC$ (do $M$ là trung điểm $BC$)
$\Rightarrow \frac{AD}{DB}=\frac{AE}{EC}$
$\Rightarrow DE\parallel BC$ (theo định lý Talet đảo)
b.
Tam giác $ABM$ có $DI\parallel BM$ (do $DE\parallel BC$) nên áp dụng định lý Talet:
$\frac{DI}{BM}=\frac{AI}{AM}$
Tam giác $ACM$ có $IE\parallel CM$ (do $DE\parallel BC$) nên áp dụng định lý Talet:
$\frac{IE}{MC}=\frac{AI}{AM}$
$\Rightarrow \frac{DI}{BM}=\frac{IE}{MC}$
Mà $BM=CM$ nên $DI=IE$
$\Rightarrow I$ là trung điểm $DE$>
a: Xét ΔBDC có
M là trung điểm của BC
ME//BD
Do đó: E là trung điểm của DC
=>DE=EC(1)
Xét ΔAME có
I là trung điểm của AM
ID//ME
Do đó; D là trung điểm của AE
=>AD=DE(2)
Từ (1) và (2) suy ra AD=DE=EC
b: Xét ΔAME có
I là trung điểm của AM
D là trung điểm của AE
Do đó:ID là đường trung bình
=>ID=1/2ME
hay ME=2ID
Xét ΔBDC có
M là trung diểm của BC
E là trung điểm của DC
Do đó: ME là đường trung bình
=>ME=BD/2
=>2ID=BD/2
=>ID=BD/4