14 Tìm giá trị nhỏ nhất của biểu thức :
A=\(\left|x\right|+\left|8-x\right|\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\dfrac{x+2}{\left|x\right|}\left(đk:\left|x\right|\ne0\right)\)
\(\left|x\right|\ge0\forall x\)
\(MAX_C\Rightarrow MNI_X\)
\(x\ne0\Rightarrow x=1\)
\(\Rightarrow MAX_C=\dfrac{1+2}{\left|1\right|}=3\)
Vì | x-1| ; |x+2|; |x-3| ; |x+4| ; |x-5|; |x+6| ; |x-7| ; |x+8| ; |x-9| luôn luôn < hoặc = 0
vì vậy min của T =0
\(T=|x-1|+|x+2|+|x-3|+|x+4|+|x-5|+|x+6|+|x-7|+|x+8|+|x-9|\)
\(\Rightarrow T=|x-1|+|x+2|+|3-x|+|x+4|+|5-x|+|x+6|+|7-x|+|x+8|+|9-x|\)
\(\Rightarrow T\ge|x-1+x+2+3-x+x+4+5-x+x+6+7-x+x+8+9-x|\)
\(\Rightarrow T\ge|43|\)
\(\Rightarrow T\ge43\)
Vậy \(Min_T=43\)
a: \(A=\left(2x+\dfrac{1}{3}\right)^4-1\ge-1\)
Dấu '=' xảy ra khi x=-1/6
b: \(B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\le3\)
Dấu '=' xảy ra khi 4/9x-2/15=0
hay x=2/15:4/9=2/15x9/4=18/60=3/10
\(D=\dfrac{1}{\left|x-2\right|+3}\)
T a thấy : |x-2|+3 luôn lớn hơn hoặc bằng 3 với mọi x
=> \(\dfrac{1}{\left|x-2\right| +3}\) luôn nhỏ hơn hoặc bằng 1/3
Dấu bằng xảy ra <=> x-2=0 => x=2
Vậy GTLN của biểu thức D là 1/3 tại x=2
Giải:
a) \(A=10-4\left|x-2\right|\)
Vì \(\left|x-2\right|\ge0\)
\(\Leftrightarrow4\left|x-2\right|\ge0\)
\(\Leftrightarrow A=10-4\left|x-2\right|\le10\)
Vậy giá trị lớn nhất của biểu thức A là 10.
\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
b) \(B=x-\left|x\right|\)
Vì \(\left|x\right|\ge0\)
\(\Leftrightarrow B=x-\left|x\right|\le0\)
Vậy giá trị lớn nhất của biểu thức B là 0.
\(\Leftrightarrow x=0\)
c) \(C=5-\left|2x-1\right|\)
Vì \(\left|2x-1\right|\ge0\)
\(\Leftrightarrow C=5-\left|2x-1\right|\le5\)
Vậy giá trị lớn nhất của biểu thức C là 5.
\(\Leftrightarrow2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)
d) \(D=\dfrac{1}{\left|x-2\right|+3}\)
Để biểu thức D đạt giá trị lớn nhất thì \(\left|x-2\right|+3\) phải đạt giá trị bé nhất
Mà \(\left|x-2\right|\ge0\)
\(\Leftrightarrow\left|x-2\right|+3\ge3\)
\(\Rightarrow\) giá trị lớn nhất của \(\left|x-2\right|+3\) là 3
\(\Leftrightarrow D=\dfrac{1}{\left|x-2\right|+3}\le\dfrac{1}{3}\)
Vậy giá trị lớn nhất của biểu thức D là \(\dfrac{1}{3}\).
\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Chúc bạn học tốt!
\(A=\left(\left|x-1\right|+\left|2020-x\right|\right)+\left(\left|x-2\right|+\left|2019-x\right|\right)+...+\left(\left|x-1009\right|+\left|1010-x\right|\right)\\ A\ge\left|x-1+2020-x\right|+\left|x-2+2019-x\right|+...+\left|x-1009+1010-x\right|\\ A\ge2019+2017+...+1=\dfrac{2020\left[\left(2019-1\right):2+1\right]}{2}=1020100\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(2020-x\right)\ge0\\...\\\left(x-1009\right)\left(1010-x\right)\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1\le x\le2020\\...\\1009\le x\le1010\end{matrix}\right.\)
\(\Leftrightarrow1009\le x\le1010\)
Áp dụng BĐT:
\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có:
\(A\ge\left|x+8-x\right|\)
\(A\ge8\)
Dấu "=" xảy ra khi:
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\8-x\ge0\Rightarrow x\le8\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\8-x< 0\Rightarrow x>8\end{matrix}\right.\end{matrix}\right.\)
Vậy xảy ra khi:
\(0\le x\le8\)
Xài BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A=\left|x\right|+\left|8-x\right|\ge\left|x+8-x\right|=8\)
Khi \(0\le x\le 8\)