Tìm gtln và nhỏ nhất
K= 2x^2 + 2xy - 2x + 2xy + y^2 T=4x^2−12xy+12y+9y^2−20+8x lm cho mình với mình cần gấpHãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
$A=2x^2+y^2-2xy+x+2=(x^2+y^2-2xy)+(x^2+x+\frac{1}{4})+\frac{7}{4}$
$=(x-y)^2+(x+\frac{1}{2})^2+\frac{7}{4}$
Vì $(x-y)^2\geq 0; (x+\frac{1}{2})^2\geq 0$ với mọi $x,y$
$\Rightarrow A\geq 0+0+\frac{7}{4}=\frac{7}{4}$
Vậy $A_{\min}=\frac{7}{4}$. Giá trị này đạt được khi $x-y=x+\frac{1}{2}=0$
$\Leftrightarrow x=y=\frac{-1}{2}$
Bài 2:
$B=x^2+9y^2+4z^2-2x+12y-4z+20$
$=(x^2-2x+1)+(9y^2+12y+4)+(4z^2-4z+1)+14$
$=(x-1)^2+(3y+2)^2+(2z-1)^2+14$
Vì $(x-1)^2\geq 0; (3y+2)^2\geq 0; (2z-1)^2\geq 0$ với mọi $x,y,z$
$\Rightarrow B\geq 0+0+0+14=14$
Vậy $B_{\min}=14$. Giá trị này đạt được khi $x-1=3y+2=2z-1=0$
$\Leftrightarrow x=1; y=\frac{-2}{3}; z=\frac{1}{2}$
kí hiệu a l b là a chia hết cho b nhé
xy-1 l (x-1)(y-1) <=> xy-1 l y-1 <=> y(x-1)+y-1 l y-1 => x-1 l y-1
tương tự : y-1 l x-1
=> \(\orbr{\begin{cases}x-1=y-1\\x-1=1-y\end{cases}}\Rightarrow\orbr{\begin{cases}x=y\\x+y=2\end{cases}}\)
+> x=y \(\Rightarrow x^2-1\)l \(\left(x-1\right)^2\) <=> x+1 l x-1 <=> 2 l x-1 => x=2 hoặc x=3
|+> x+y=2 thay vào tương tự như trên nhé
Xem lại biểu thức K
biểu thức T lm kiểu gì vậy bạn