Một người đi xe đạp từ A đến B tron g một thời gian qui định và với vận tốc xác định . Nếu người tăng vận tốc 3 km/h thì sẽ đến sớm 1h . Nếu người đó giảm vận tốc 2km/h thì đến B muộn 1h . Tính khoảng cách AB , vận tốc và thời gian đi của người đó .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi thời gian dự định là x(giờ)
vận tốc dự định là y(km/h)(x,y>0)
=>quãng đường AB dài x.y(km)
Nếu vận tốc tăng thêm 20km/h thì đến B sớm hơn 1h so với dự định=>(x-1)(y+20)=xy(1)
nếu vận tốc giảm đi 10km/h thì đến B muộn 1h so với dự định
=>(x+1)(y-10)=xy(2)
từ(1)(2) có hệ \(\left\{{}\begin{matrix}\left(x-1\right)\left(y+20\right)=xy\\\left(x+1\right)\left(y-10\right)=xy\end{matrix}\right.\) giải hệ pt =>\(\left\{{}\begin{matrix}x=3\\y=40\end{matrix}\right.\)(TM)
=>quãng đường AB dài xy=3.40=120km
Game này ez thôi bạn :))
Bài 1:
\(t_1=\frac{AB}{v_1}=\frac{AB}{15}\)
\(t_2=\frac{AB}{v_2}=\frac{AB}{30}\)
\(t=t_1-t_2\)
\(t=\frac{AB}{15}-\frac{AB}{30}\left(1\right)\)
\(t_1'=\frac{AB+10}{v_1}=\frac{AB+10}{15}\)
\(t_2'=\frac{\frac{AB}{2}}{v_2}+\frac{\frac{AB}{2}+10}{v_2-3}=\frac{\frac{AB}{2}}{30}+\frac{\frac{AB}{2}+10}{30-3}=\frac{AB}{2.30}+\frac{\frac{AB}{2}+10}{27}\)
\(t=t_1'-t_2'\)
\(t=\frac{AB+10}{15}-\frac{AB}{2.30}-\frac{\frac{AB}{2}+10}{27}\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow\frac{AB}{15}-\frac{AB}{30}=\frac{AB+10}{15}-\frac{AB}{2.30}-\frac{\frac{AB}{2}+10}{27}\)
\(\Rightarrow AB=560km\)
Bài 2:
\(t_1=\frac{AB}{v+3}\)
\(t=t_1+1\left(1\right)\)
\(t_2=\frac{AB}{v-2}\)
\(t=t_2-1\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow t_1+1=t_2-1\)
\(\frac{AB}{v+3}+2=\frac{AB}{v-2}\)
Vậy .......................................
Gọi vận tốc dự định của ô tô là x (km/h)
thời gian dự định là y (h)
Đk x > 10; y > 1
Quãng đường AB là xy (km)
Nếu vận tốc tăng thêm 20 km/h thì vận tốc xe lúc này là x + 20 km/h
Thời gian giảm 1 h ta có y-1
Ta có pt (x+20)(y-1) =xy (1)
nếu vận tốc giảm 10 km/h thì thì vận tốc xe lúc này là x-10 km/h
Thời gian tăng 1h ta có y+1
Quãng đường AB là (x-10)(y+1)
Ta có pt (x-10)(y+1) =xy (2)
Từ (1) và (2) ta có hệ pt
{(x+20)(y-1) =xy (1)
{(x-10)(y+1) =xy (2)
<=>
{x-20y=-20
{x-10y=10
<=>
{10y=30
{x-10y=10
<=>
{y=3 (tmđk)
{x=40 (tmđk)
Vậy vận tốc dự định của ô tô là 40 km/h
Thời gian dự định là 3 giờ
Gọi x(km/h) và y(h) là vận tốc dự định và thời gian dự định(Điều kiện: x>0; y>0)
Độ dài quãng đường AB là: xy(km)
Vì khi vận tốc tăng lên 14km/h thì đến B sớm 2h nên ta có phương trình:
\(\left(x+14\right)\left(y-2\right)=xy\)
\(\Leftrightarrow xy-2x+14y-28=xy\)
\(\Leftrightarrow-2x+14y=28\)(1)
Vì khi vận tốc giảm 4km/h thì đến B muộn 1 giờ nên ta có phương trình:
\(\left(x-4\right)\left(y+1\right)=xy\)
\(\Leftrightarrow xy+x-4y-4=xy\)
\(\Leftrightarrow x-4y=4\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}-2x+14y=28\\x-4y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2x+14y=28\\2x-8y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6y=36\\x-4y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=6\\x=4+4y=4+4\cdot6=28\end{matrix}\right.\)(thỏa ĐK)
Vậy: Vận tốc dự định là 28km/h và thời gian dự định là 6h
Gọi vận tốc và thời gian lần lượt là x và y (x>15; y>1)
Nếu vận tốc tăng thêm 30km/h thì thời gian đi sẽ giảm 1h nên ta có PT:
(x+30)(y-1)=xy
⇔-x+30y=30 (1)
Nếu vận tốc giảm bớt 15km/h thì thời gian đi tăng thêm 1h nên ta có PT:
(x-15)(y+1)=xy
⇔x-15y=15 (2)
Từ (1) và (2) ta có HPT: \(\left\{{}\begin{matrix}-x+30y=30\\x-15y=15\end{matrix}\right.\)
Giải HPT ta có: \(\left\{{}\begin{matrix}x=60\\y=3\end{matrix}\right.\)
Vậy...
Vận tốc xác định là x: x>0(km/h)
Thời gian xác định: t(t>1)(h)
Quãng đường: xt (km)
Cũng có thể biểu thị: (x+3)(t-1)(km)
Và: (x-2)(t+1)(km)
Vậy ta có hệ phương trình:
\(\left\{{}\begin{matrix}\left(x+3\right)\left(t-1\right)=xt\\\left(x-2\right)\left(t+1\right)=xt\end{matrix}\right.\)
Dễ dàng giải hệ này, ta được: t=5; x=12=>s=60
bạn làm gì mà giải đc hệ trên vậy