Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(t_1=\frac{AB}{v_1}=\frac{AB}{15}\)
\(t_2=\frac{AB}{v_2}=\frac{AB}{30}\)
\(t=t_1-t_2\)
\(t=\frac{AB}{15}-\frac{AB}{30}\left(1\right)\)
\(t_1'=\frac{AB+10}{v_1}=\frac{AB+10}{15}\)
\(t_2'=\frac{\frac{AB}{2}}{v_2}+\frac{\frac{AB}{2}+10}{v_2-3}=\frac{\frac{AB}{2}}{30}+\frac{\frac{AB}{2}+10}{30-3}=\frac{AB}{2.30}+\frac{\frac{AB}{2}+10}{27}\)
\(t=t_1'-t_2'\)
\(t=\frac{AB+10}{15}-\frac{AB}{2.30}-\frac{\frac{AB}{2}+10}{27}\left(2\right)\)
Từ: \(\left(1\right)\left(2\right)\Rightarrow\frac{AB}{15}-\frac{AB}{30}=\frac{AB+10}{15}-\frac{AB}{2.30}-\frac{\frac{AB}{2}+10}{27}\)
Vậy \(AB=560km\)
1/Gọi quãng đường AB = x (Km) (x > 0)
--> thời gian xe đạp đi hết AB là: x/15 (h)
--> thời gian xe máy đi hết AB là: x/30 (h)
do 2 xe gặp nhau ở B --> xe máy xuất phát sau xe đạp: x/15 - x/30 = x/30 (h)
đi được 1/2 quãng đường AB thì người đi xe đạp giảm vận tốc 3km/h
--> 1/2 quãng đường AB còn lại xe đạp đi với v = 12km/h
xe đạp đi 1/2 quãng đường AB đầu trong thời gian: (x/2)/15 = x/30 (h)
quãng đường từ giữa AB → C là: x/2 - 10 (km)
--> thời gian xe đạp đi từ giữa AB → C là: (x/2 - 10)/12 = x/24 - 5/6 (h)
--> thời gian xe đạp đi từ A → C = x/30 + x/24 - 5/6 (h)
--> Khoảng cách A → C = x - 10 (km)
--> thời gian xe máy đi từ A → C = (x - 10)/30 = x/30 - 1/3 (h)
2 xe gặp nhau tại C, mà xe máy xuất phát sau xe đạp x/30 (h), nên ta có pt:
(Thời gian xe đạp đi A → C) = (Thời gian xe máy đi A → C) + x/30 (h)
<=> x/30 + x/24 - 5/6 = x/30 - 1/3 + x/30
<=> x/24 - x/30 = 5/6 - 1/3
<=> x/120 = 1/2
<=> x = 60 (km) , thỏa mãn đk x > 0
Vậy quãng đường AB: 60km
2/Gọi vận tốc, thời gian dự định đi của người đó là x (km/h), y(h) (ĐK:x>2; y>1)
Quẵng đường AB dài là: xy (km)
+Nếu người đó tăng vận tốc lên 3km/h thì sẽ đến B sớm hơn 1h
Nên ta có phương trình: ( x + 3 ) ( y - 1 ) = xy
xy - x + 3y - 3 = xy
x - 3y = -3 ( 1 )
+Vì nếu người đó giảm vận tốc 2km/h thì sẽ đến B muộn hơn 1h
Nên ta có pt: ( x - 2 ) ( y + 1 ) = xy
xy + x - 2y - 2 = xy
x - 2y = 2 ( 2 )
Từ (1)(2) ta có hệ phương trình:
x - 3y = -3
x - 2y = 2
y = 5
x - 2.5 = 2
x = 12 ( TMĐK )
y = 5 ( TMĐK )
Quãng đường AB dài là: 12.5=60 km
Vậy quãng đường AB dài 60km
vận tốc dự định đi của người đó là: 12km/h với thời gian dự định là 5h
BÀI 4:Gọi đọ dài quãng đường AB là x(km)(x>0)
Khi đó: Thời gian để người đi xe đạp điện đi hết x km là\(\frac{x}{25}\)(h)
Thời gian để người đi xe máy đi hết x km là \(\frac{x}{40}\)(h)
Theo đb có phương trình sau: \(\frac{x}{25}\)- 1 -\(\frac{x}{40}\)= \(\frac{1}{2}\)
Giải phương trình ta đc x=100 (tmđk)
Vậy độ dài quãng đường là 100km
BÀI 5:Gọi độ dài quãng đường cũ từ A đến B là x(km)(x>0)
Khi đó: Thời gian để đi x km là:\(\frac{x}{28}\)(h)
Con đường mới từ B về A là: x+5(km)
Thời gian đi x+5 km là: \(\frac{x+5}{35}\)(h)
Theo đb có phương trình sau:\(\frac{x}{28}\)- \(\frac{x+5}{35}\)= \(\frac{3}{4}\)
Giải phương trình ta đc x=125(tmđk)
Vậy quãng đương cũ từ A đến B là 125km
BÀI 6:Thời gian để xe máy đi hết quãng đường là : 9h30' - 6h = 3,5h
Thời gian để ô tô đi hết quãng đường là: 9h30' - (6h - 1h ) = 2,5h
Gọi vận tốc trung bình của xe máy là x(km/h)(x>0)
Khi đó vận tốc trung bình của ô tô là x+20 (km/h)
Theo đb có phương trình sau: 3,5x = 2,5(20 + x )
Giải phương trình ta đc: x= 50 (tmđk)
Vậy vận tốc trung bình của xe máy là 50km/h và quãng đường AB dài 3,5.50=175 km
BÀI 7:Gọi thời điểm người t2 đuổi kịp người t1 là x(h)(x>7h)
Khi đó: Thời gian người t1 đi đến khi người t2 đuổi kịp là x-7(h)
Thời gian người t2 đi đến khi đuổi kịp người t1 là x-8(h)
Theo đb có phương trình sau:(x - 7)30 = (x - 8)45
Giải phương trình ta đc x=10(tmđk)
Vậy lúc 10h thì người t2 đuổi kịp người t1 và cách A là 90km
BÀI 8:Gọi thời gian đi đoạn đương bằng là x(h)(0<x<3)
Khi đó thời gian để đi đoạn đường dốc là 3 - x (h)
Theo đb có phương trình sau:10x -15(3 - x)=5
Giải phương trình ta đc x=2(tmđk)
Vậy quãng đường AB dài 10.2 + 15.1 + 5 =40km
BÀI 9:Gọi thời gian từ lúc xe máy khởi hành đến lúc 2 xe gặp nhau là x(h)(x>0,3h)
Khi đó: Quãng đường xe máy đi đc là 40x(km)
Thời gian ô tô đi đến lúc gặp xe máy là x - 0,3 (h)
Quãng đường ô tô đi đc là 45(x - 0,3) (km)
Theo đb có phương trình sau: 40x + 45(x - 3) = 97
Giải phương trình ta đc x=1,3(tmđk)
Vậy hai xe gặp nhau sau 1h18' sau khi xe máy khởi hành
BÀI 10:Gọi độ dài quãng đường AB là x (km)(x>0)
Theo đb có phương trình sau: \(\frac{x}{48}\)= 1 + \(\frac{1}{6}\)+\(\frac{x-48}{48+6}\)
Giải phương trình ta đc x=120 (tmđk)
Vậy quãng đường AB dài 120 km
4
Gọi vận tốc của tàu thủy khi nc yên lặng là x (km/h),(x>4)
=) vận tốc xuôi dòng là x+4 (km/h)
=) thời gian xuôi dòng là \(\frac{80}{x+4}\)h
=)vận tốc ngược dòng là x-4 (km/h)
=) thời gian xuôi dòng là \(\frac{80}{x-4}\)h
mà tổng thời gian cả đi lẫn về là 8h20p=\(\frac{25}{3}\)h
nên ta có phương trình \(\frac{80}{x+4}\)+\(\frac{80}{x-4}\)=\(\frac{25}{3}\)
=) 240.(x-4) +240.(x+4) = 25. (x-4)(x+4)
=) x1=20 (thỏa mãn)
x2=-0.8 (loại)
Vậy vận tốc của tàu thủy khi nước yên lặng là 20km/h
Gọi quãng đường của mỗi chặng là S (km)
Quãng đường AB = 3S.
Thời gian đi chặng thứ nhất là: t1 = S/v1 = S/72
Thời gian đi chặng thứ hai là: t2 = S/v2 = S/60
Thời gian đi chặng thứ ba là t3 = S/v3 = S/40
Theo giả thiết: t1+t2+t3=4 <=> S/72 + S/60 + S/40 = 4
<=> S(1/72 + 1/60 + 1/40) = 4
<=> S.1/18 = 4
<=> S= 4.18 = 72 (km)
Vậy quãng đường AB là: 3.S = 3.72 = 216 (km)
Bài 1
Tổng vận tốc của hai xe là
\(40+10=50\) km/giờ
Thời gian của hai xe là
\(60\div50=1,2\) giờ
Thời gian của hai nếu cả hai xe đi từ A cùng 1 lúc là
\(1,2+1=2,2\) giờ
Quãng đường AB dài số km là
\(50\times2,2=110\) km
Đáp số 110 km
Bài 2
Tổng vận tốc của xe đó là
\(50+35=85\) km/giờ
Thời gian của xe đó là
\(1\) giờ \(+\) \(2\) giờ \(=3\) giờ
Quãng đường A và B dài số ki - lô - mét là
\(85\times3=255\) km
Đáp số 255 km
Bài 3
Đổi 5 giờ 20 phút \(=5\frac{2}{6}=\frac{30}{6}=5\) giờ
Vận tốc của chiếc cano là
\(20\div5+12=16\) km/giờ
Đáp số 16 km/giờ
Bài 4
Đổi 8 giờ 20 phút \(=8\frac{2}{6}=\frac{50}{6}=\frac{25}{3}\) giờ
Quãng đường chiếc tàu thủy chạy được là
\(80\times\frac{25}{3}=9,6\) km
Vận tốc của chiếc cano là
\(9,6\div\frac{23}{5}=1,152\) km/giờ
Đáp số 1,152 km/giờ
Bài 5
Tổng vận tốc của hai cano là
\(20+24=44\) km/giờ
Đổi 40 phút \(=\frac{2}{3}\) giờ
Chiều dài quãng sông AB là
\(44\times\frac{2}{3}=33\) km
Đáp số 33 km
Bài 6
Đổi 100 phút \(=\) 1 giờ 40 phút hay \(1\frac{4}{6}=\frac{10}{6}=\frac{5}{3}\) giờ
Vận tốc của ôtô là
\(240\times\frac{5}{3}+12=412\) km/giờ
Đáp số 412 km/giờ
Bài 7
Tổng quãng đường cano đó là
\(42+20=62\) km
Vận tốc của cano đó là
\(62\div5+2=14,4\) km/giờ
Đáp số 14,4 km/giờ
Bài 8
Tổng vận tốc của hai người đi xe đạp là
\(30+3=33\) km/giờ
Đổi 30 phút \(=\) 0,5 giờ
Quãng đường AB là
\(33\times0,5=16,5\) km
Vận tốc của hai người là
\(16,5\div33=0,5\) km/giờ
Đáp số 0,5 km/giờ
P/S bài 8 này mình ko biết đúng hay sai nhé
Ko biết đúng hay sai mới lớp 6
Còn 4 bài chiều nay mình làm tiếp nhé chúc bạn học giỏi và có 1 ngày tết thiếu nhi vui vẻ
a) Gọi quãng đường AB là x(x>0)km
đổi 15p=0.25h
thời gian đi thực tế là \(\dfrac{x}{12}\)h
thời gian đi dự định là \(\dfrac{x}{12+3}\)h
vì nếu đi vs vận tốc dự định thì sẽ đến sớm hơn thực tế 1 h nên ta có pt
\(\dfrac{x}{12}\)-\(\dfrac{x}{12+3}\)=1
giải pt x=60
vậy quãng đường AB dài 60km
thời gian dự định đi là 60:15=4h
b) gọi quãng đường S1 là a(60>x>0)km
quãng đường S2 là 60-a km
thời gian dự tính đi là 60:12=5h
thời gian đi quãng đường S1 là \(\dfrac{a}{12}\)h
thời gian đi quãng đường S2 là \(\dfrac{60-a}{15}\)h
vì đến sớm hơn so vs dự định là 30p=0.5h
nên ta có pt \(\dfrac{a}{12}\)+\(\dfrac{60-a}{15}\)+0.25=5-0.5
giải pt x=15
vậy quãng đường S1 dài 15 km
Game này ez thôi bạn :))
Bài 1:
\(t_1=\frac{AB}{v_1}=\frac{AB}{15}\)
\(t_2=\frac{AB}{v_2}=\frac{AB}{30}\)
\(t=t_1-t_2\)
\(t=\frac{AB}{15}-\frac{AB}{30}\left(1\right)\)
\(t_1'=\frac{AB+10}{v_1}=\frac{AB+10}{15}\)
\(t_2'=\frac{\frac{AB}{2}}{v_2}+\frac{\frac{AB}{2}+10}{v_2-3}=\frac{\frac{AB}{2}}{30}+\frac{\frac{AB}{2}+10}{30-3}=\frac{AB}{2.30}+\frac{\frac{AB}{2}+10}{27}\)
\(t=t_1'-t_2'\)
\(t=\frac{AB+10}{15}-\frac{AB}{2.30}-\frac{\frac{AB}{2}+10}{27}\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow\frac{AB}{15}-\frac{AB}{30}=\frac{AB+10}{15}-\frac{AB}{2.30}-\frac{\frac{AB}{2}+10}{27}\)
\(\Rightarrow AB=560km\)
Bài 2:
\(t_1=\frac{AB}{v+3}\)
\(t=t_1+1\left(1\right)\)
\(t_2=\frac{AB}{v-2}\)
\(t=t_2-1\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow t_1+1=t_2-1\)
\(\frac{AB}{v+3}+2=\frac{AB}{v-2}\)
Vậy .......................................