So sánh \(\dfrac{2016\cdot2018}{1999+2016\cdot2017}\) với 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(2016=a\) biểu thức trên trở thành:
\(P=\dfrac{\left(a^2\left(a+10\right)+31\left(a+1\right)-1\right)\left(a\left(a+5\right)+4\right)}{\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)\left(a+5\right)}=\dfrac{A}{B}\)
Với \(B=\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)\left(a+5\right)\)
Ta có: \(a^2\left(a+10\right)+31\left(a+1\right)-1=a^3+10a^2+31a+30\)
\(=a^3+5a^2+6a+5a^2+25a+30=a\left(a^2+5a+6\right)+5\left(a^2+5a+6\right)\)
\(=\left(a+5\right)\left(a^2+5a+6\right)=\left(a+5\right)\left(a^2+2a+3a+6\right)\)
\(=\left(a+5\right)\left(a+2\right)\left(a+3\right)\)
Và \(a\left(a+5\right)+4=a^2+5a+4=a^2+a+4a+4=\left(a+1\right)\left(a+4\right)\)
\(\Rightarrow A=\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)\left(a+5\right)=B\)
\(\Rightarrow P=\dfrac{A}{B}=1\)
\(\frac{2015+2016.2017}{2017.2018-2019}\)
\(=\frac{2015+2016}{2018-2019}\)
\(=\frac{4031}{-1}\)
\(=-4031\)
(Mik làm bừa thôi bạn, sai đừng k sai nha :( Tội mik lắm)
A = \(\frac{2015.2016-1}{2015.2016}\)= \(\frac{2015.2016}{2015.2016}\)\(-\)\(\frac{1}{2015.2016}\)= 1 \(-\)\(\frac{1}{2015.2016}\)
B = \(\frac{2016.2017-1}{2016.2017}\)= \(\frac{2016.2017}{2016.2017}\)\(-\)\(\frac{1}{2016.2017}\)= 1 \(-\)\(\frac{1}{2016.2017}\)
Vì \(\frac{1}{2015.2016}\)> \(\frac{1}{2016.2017}\)
=> 1 \(-\)\(\frac{1}{2015.2016}\)< \(1-\)\(\frac{1}{2016.2017}\)
=> A < B
Giải:
a)Ta có:
C=1957/2007=1957+50-50/2007
=2007-50/2007
=2007/2007-50/2007
=1-50/2007
D=1935/1985=1935+50-50/1985
=1985-50/1985
=1985/1985-50/1985
=1-50/1985
Vì 50/2007<50/1985 nên -50/2007>-50/1985
⇒C>D
b)Ta có:
A=20162016+2/20162016-1
A=20162016-1+3/20162016-1
A=20162016-1/20162016-1+3/20162016-1
A=1+3/20162016-1
Tương tự: B=20162016/20162016-3
B=1+3/20162016-3
Vì 20162016-1>20162016-3 nên 3/20162016-1<3/20162016-3
⇒A<B
Chúc bạn học tốt!
Làm tiếp:
c)Ta có:
M=102018+1/102019+1
10M=10.(102018+1)/202019+1
10M=102019+10/102019+1
10M=102019+1+9/102019+1
10M=102019+1/102019+1 + 9/102019+1
10M=1+9/102019+1
Tương tự:
N=102019+1/102020+1
10N=1+9/102020+1
Vì 9/102019+1>9/102020+1 nên 10M>10N
⇒M>N
Chúc bạn học tốt!
\(2018^2+2016^2\)
\(=\left(2017+1\right)^2+\left(2017-1\right)^2\)
\(=2017^2+2\cdot2017+1+2017^2-2\cdot2017+1\)
\(=2\cdot2017^2+2\)
\(>B\)
\(10A=\dfrac{10^{2015}+2016+9\cdot2016}{10^{2015}+2016}=1+\dfrac{18144}{10^{2015}+2016}\)
\(10B=\dfrac{10^{2016}+9+18144}{10^{2016}+2016}=1+\dfrac{18144}{10^{2016}+2016}\)
mà \(\dfrac{18144}{10^{2015}+2016}>\dfrac{18144}{10^{2016}+2016}\)
nên A>B
Giải.
Ta có : \(\dfrac{2016.2018}{1999+2016.2017}=\dfrac{2016\left(2017+1\right)}{1999+2016.2017}\)
\(=\dfrac{2016.2017+2016}{1999+2016.2017}\)
Do \(2016>1999\)
\(\Rightarrow2016.2017+2016>1999+2016.2017\)
\(\dfrac{2016.2017+2016}{1999+2016.2017}>1\)
Vậy...
tik mik nha !!!
Ta có:
\(\dfrac{2016.2018}{1999+2016.2017}\)= \(\dfrac{2016\left(1+2017\right)}{1999+2016.2017}\)= \(\dfrac{2016+2016.2017}{1999+2016.2017}\)
Vì \(2016>1999\) nên \(2016+2016.2017>1999+2016.2017\)
Do đó, \(\dfrac{2016+2016.2017}{1999+2016.2017}\) > 1
Vậy \(\dfrac{2016.2018}{1999+2016.2017}\) > 1