\(\frac{2015\cdot2017}{2016\cdot2018}va\frac{2016\cdot2017}{2014\cdot2015}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2019

dài lắm đó

18 tháng 4 2017

A = \(\frac{2015.2016-1}{2015.2016}\)=  \(\frac{2015.2016}{2015.2016}\)\(-\)\(\frac{1}{2015.2016}\)= 1 \(-\)\(\frac{1}{2015.2016}\)
B = \(\frac{2016.2017-1}{2016.2017}\)\(\frac{2016.2017}{2016.2017}\)\(-\)\(\frac{1}{2016.2017}\)= 1 \(-\)\(\frac{1}{2016.2017}\)
Vì \(\frac{1}{2015.2016}\)\(\frac{1}{2016.2017}\)
=> 1 \(-\)\(\frac{1}{2015.2016}\)\(1-\)\(\frac{1}{2016.2017}\)
=> A < B

8 tháng 8 2017

Giải.

Ta có : \(\dfrac{2016.2018}{1999+2016.2017}=\dfrac{2016\left(2017+1\right)}{1999+2016.2017}\)

\(=\dfrac{2016.2017+2016}{1999+2016.2017}\)

Do \(2016>1999\)

\(\Rightarrow2016.2017+2016>1999+2016.2017\)

\(\dfrac{2016.2017+2016}{1999+2016.2017}>1\)

Vậy...

tik mik nha !!!

8 tháng 8 2017

Ta có:

\(\dfrac{2016.2018}{1999+2016.2017}\)= \(\dfrac{2016\left(1+2017\right)}{1999+2016.2017}\)= \(\dfrac{2016+2016.2017}{1999+2016.2017}\)

\(2016>1999\) nên \(2016+2016.2017>1999+2016.2017\)

Do đó, \(\dfrac{2016+2016.2017}{1999+2016.2017}\) > 1

Vậy \(\dfrac{2016.2018}{1999+2016.2017}\) > 1

17 tháng 4 2017

Dài thế bạn

18 tháng 4 2017

bạn trả lời được 1 bài cũng đc

29 tháng 4 2016

Bạn quy đồng b rồi ra luôn

29 tháng 4 2016

Ta thấy : 
 \(\frac{2014}{2016}>\frac{2014}{2016+2017}\) 
 \(\frac{2015}{2017}>\frac{2015}{2016+2017}\)
\(\Rightarrow\frac{2014}{2106}+\frac{2015}{2017}>\frac{2014}{2016+2017}+\frac{2015}{2016+2017}=\frac{2014+2015}{2016+2017}\)
=> B>A

24 tháng 9 2017

\(\frac{\left(\frac{1}{2}\right)^2.2018-\left(\frac{1}{4}\right)^2.2017}{\frac{1}{4096}.\frac{1}{3}+2^{13}}\)

=

24 tháng 9 2017

\(\frac{\left(\frac{1}{2}\right)^2.2018-\left(\frac{1}{4}\right)^6.2017}{\frac{1}{4096}.\frac{1}{3}+2^{13}}\)\(\Leftrightarrow\frac{\left(\frac{1}{4}\right).2018-\left(\frac{1}{4096}\right).2017}{\frac{1}{4096}.\frac{1}{3}+2^{13}}\)

Lược bỏ các số giống nhau đi ta được :

\(\frac{\left(\frac{1}{4}\right).2018.2017}{\frac{1}{3}+2^{13}}\Leftrightarrow\frac{\left(\frac{1}{4}\right).2018.2017}{\frac{1}{3}.8192}\Leftrightarrow\frac{\frac{1}{4}.4070306}{\frac{8192}{3}}\)

\(=\frac{1017576,5}{\frac{8192}{3}}\)

1 tháng 9 2016

A = (n + 2015)(n + 2016) + n2 + n

(n + 2015)(n + 2015 + 1) + n(n + 1)

Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2

=> (n + 2015)(n + 2015 + 1) chia hết cho 2

      n(n + 1) chia hết cho 2

=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2

=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)

19 tháng 4 2015

Dấu < nhé!

2 tháng 5 2016

2014+2015+2016/2015+2016+2017<2014/2015+2015/2016+2016/2017

14 tháng 4 2016

Ta có : P = 2014/2015 + 2015/2016 + 2016/2017 < 2014/(2015+2016+2017) + 2015/(2015+2016+2017) + 2016/(2015+2016+2017) = Q

Suy ra : P < Q

Vậy P < Q.

14 tháng 4 2016

Ta thấy:\(\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2017}\)>\(\frac{2014+2015+2016}{2015+2016+2017}\)
Vậy     :P>Q