Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\frac{2015.2016-1}{2015.2016}\)= \(\frac{2015.2016}{2015.2016}\)\(-\)\(\frac{1}{2015.2016}\)= 1 \(-\)\(\frac{1}{2015.2016}\)
B = \(\frac{2016.2017-1}{2016.2017}\)= \(\frac{2016.2017}{2016.2017}\)\(-\)\(\frac{1}{2016.2017}\)= 1 \(-\)\(\frac{1}{2016.2017}\)
Vì \(\frac{1}{2015.2016}\)> \(\frac{1}{2016.2017}\)
=> 1 \(-\)\(\frac{1}{2015.2016}\)< \(1-\)\(\frac{1}{2016.2017}\)
=> A < B
Giải.
Ta có : \(\dfrac{2016.2018}{1999+2016.2017}=\dfrac{2016\left(2017+1\right)}{1999+2016.2017}\)
\(=\dfrac{2016.2017+2016}{1999+2016.2017}\)
Do \(2016>1999\)
\(\Rightarrow2016.2017+2016>1999+2016.2017\)
\(\dfrac{2016.2017+2016}{1999+2016.2017}>1\)
Vậy...
tik mik nha !!!
Ta có:
\(\dfrac{2016.2018}{1999+2016.2017}\)= \(\dfrac{2016\left(1+2017\right)}{1999+2016.2017}\)= \(\dfrac{2016+2016.2017}{1999+2016.2017}\)
Vì \(2016>1999\) nên \(2016+2016.2017>1999+2016.2017\)
Do đó, \(\dfrac{2016+2016.2017}{1999+2016.2017}\) > 1
Vậy \(\dfrac{2016.2018}{1999+2016.2017}\) > 1
Ta thấy :
\(\frac{2014}{2016}>\frac{2014}{2016+2017}\)
\(\frac{2015}{2017}>\frac{2015}{2016+2017}\)
\(\Rightarrow\frac{2014}{2106}+\frac{2015}{2017}>\frac{2014}{2016+2017}+\frac{2015}{2016+2017}=\frac{2014+2015}{2016+2017}\)
=> B>A
\(\frac{\left(\frac{1}{2}\right)^2.2018-\left(\frac{1}{4}\right)^2.2017}{\frac{1}{4096}.\frac{1}{3}+2^{13}}\)
=
\(\frac{\left(\frac{1}{2}\right)^2.2018-\left(\frac{1}{4}\right)^6.2017}{\frac{1}{4096}.\frac{1}{3}+2^{13}}\)\(\Leftrightarrow\frac{\left(\frac{1}{4}\right).2018-\left(\frac{1}{4096}\right).2017}{\frac{1}{4096}.\frac{1}{3}+2^{13}}\)
Lược bỏ các số giống nhau đi ta được :
\(\frac{\left(\frac{1}{4}\right).2018.2017}{\frac{1}{3}+2^{13}}\Leftrightarrow\frac{\left(\frac{1}{4}\right).2018.2017}{\frac{1}{3}.8192}\Leftrightarrow\frac{\frac{1}{4}.4070306}{\frac{8192}{3}}\)
\(=\frac{1017576,5}{\frac{8192}{3}}\)
A = (n + 2015)(n + 2016) + n2 + n
= (n + 2015)(n + 2015 + 1) + n(n + 1)
Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2
=> (n + 2015)(n + 2015 + 1) chia hết cho 2
n(n + 1) chia hết cho 2
=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2
=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)
2014+2015+2016/2015+2016+2017<2014/2015+2015/2016+2016/2017
Ta có : P = 2014/2015 + 2015/2016 + 2016/2017 < 2014/(2015+2016+2017) + 2015/(2015+2016+2017) + 2016/(2015+2016+2017) = Q
Suy ra : P < Q
Vậy P < Q.
Ta thấy:\(\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2017}\)>\(\frac{2014+2015+2016}{2015+2016+2017}\)
Vậy :P>Q