K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2017

Bài 2 :

Ta có :

\(\dfrac{2a+b+c}{a}=\dfrac{a+2b+c}{b}=\dfrac{a+b+2c}{c}\)

\(\Rightarrow\dfrac{2a+b+c}{a}-1=\dfrac{a+2b+c}{b}-1=\dfrac{a+b+2c}{c}-1\)\(\Rightarrow\dfrac{a+b+c}{a}=\dfrac{a+b+c}{b}=\dfrac{a+b+c}{c}\)

* Nếu \(a+b+c=0\), Ta suy ra các đẳng thức sau :

\(\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\)

Thay các đẳng thức vừa tìm được vào N, ta có :

\(N=\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\)

\(\Leftrightarrow N=\dfrac{-c}{c}+\dfrac{-a}{a}+\dfrac{-b}{b}\)

\(\Leftrightarrow N=-1+\left(-1\right)+\left(-1\right)=-3\)

* Nếu \(a+b+c\ne0\)

Để \(\dfrac{a+b+c}{a}=\dfrac{a+b+c}{b}=\dfrac{a+b+c}{c}\)

\(\Rightarrow a=b=c\)

\(\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\c+a=2b\end{matrix}\right.\)

Thay các đẳng thức vào N ta có :

\(N=\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\)

\(\Leftrightarrow N=\dfrac{2c}{c}+\dfrac{2a}{a}+\dfrac{2b}{b}=2+2+2=6\)

Vậy.....

tik mik nha !!!

8 tháng 8 2017

Thank!!!!!!!!!