3/1*6 + 3/6*11 + 3/11*16 +...+ 3/61*66
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 3/11*16+3/16*21+3/21*26+.....+3/61*66
\(=\frac{3}{5}\left(\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{61.66}\right)\)
\(=\frac{3}{5}\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\right)\)
\(=\frac{3}{5}\left(\frac{1}{11}-\frac{1}{66}\right)\)
\(=\frac{3}{5}\cdot\frac{5}{66}\)
\(=\frac{1}{22}\)
\(A=\frac{3}{11.16}+\frac{3}{16.21}+\frac{3}{21.26}+...+\frac{3}{61.66}\)
\(\Rightarrow A=\frac{3}{5}\left(\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{61.66}\right)\)
\(\Rightarrow A=\frac{3}{5}.\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{61}-\frac{1}{66}\right)\)
\(\Rightarrow A=\frac{3}{5}.\left(\frac{1}{11}-\frac{1}{66}\right)\)
\(\Rightarrow A=\frac{3}{5}.\frac{5}{66}\)
\(\Rightarrow A=\frac{1}{22}\)
Vậy \(A=\frac{1}{22}\)
\(A=\frac{3}{11.16}+\frac{3}{16.21}+\frac{3}{21.26}+...+\frac{3}{61.66}\)
\(A:3.5=\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{61.66}\)
\(A:3.5=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{61}-\frac{1}{66}\)
\(A:3.5=\frac{1}{11}-\frac{1}{66}=\frac{5}{66}\)
=> \(A=\frac{5}{66}:5.3=\frac{1}{22}\)
\(A=\frac{3}{11.16}+\frac{3}{16.21}+\frac{3}{21.26}+...+\frac{3}{61.66}\)
\(A=\frac{3}{5}.\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{61}-\frac{1}{66}\right)\)
\(A=\frac{3}{5}.\left(\frac{1}{11}-\frac{1}{66}\right)\)
\(A=\frac{3}{5}.\frac{5}{66}\)
\(A=\frac{15}{330}\)
Rồi nha
a) 4.(13 - 16) - (3-5) .(-3)2
b) -2/5+ 7/11+ -11/10 + 7/-11
c) 1/2+2/3+1/6+-2/5
d) 34 .4-66/ 35.5+10.34
a) Ta có: \(4\cdot\left(13-16\right)-\left(3-5\right)\cdot\left(-3\right)^2\)
\(=4\cdot13-4\cdot16+2\cdot9\)
\(=52-64+18\)
=6
b) Ta có: \(-\dfrac{2}{5}+\dfrac{7}{11}+\dfrac{-11}{10}+\dfrac{7}{-11}\)
\(=-\left(\dfrac{2}{5}+\dfrac{11}{10}\right)+\left(\dfrac{7}{11}-\dfrac{7}{11}\right)\)
\(=-\left(\dfrac{4}{10}+\dfrac{11}{10}\right)\)
\(=\dfrac{-15}{10}=\dfrac{-3}{2}\)
a)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
b)\(\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{61.66}\)
\(=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+....+\frac{1}{61}-\frac{1}{66}\)
\(=\frac{1}{11}-\frac{1}{66}\)
\(=\frac{5}{66}\)
a,\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
ta có:
\(\frac{1}{1.2}=\frac{2-1}{1.2}=\frac{2}{1.2}-\frac{1}{1.2}=1-\frac{1}{2}\)
\(\frac{1}{2.3}=\frac{3-2}{2.3}=\frac{3}{2.3}-\frac{2}{2.3}=\frac{1}{2}-\frac{1}{3}\)
...
\(\frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
=\(1-\frac{1}{100}=\frac{99}{100}\)
b,
\(\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.16}+...+\frac{5}{61.66}\)
ta có:
\(\frac{5}{11.16}=\frac{16-11}{11.16}=\frac{16}{11.16}-\frac{11}{11.16}=\frac{1}{11}-\frac{1}{16}\)
\(\frac{5}{16.21}=\frac{21-16}{16.21}=\frac{21}{16.21}-\frac{16}{16.21}=\frac{1}{16}-\frac{1}{21}\)
...
\(\frac{5}{61.66}=\frac{66-61}{61.66}=\frac{66}{61.66}-\frac{61}{61.66}=\frac{1}{61}-\frac{1}{66}\)
= \(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\)
=\(\frac{1}{11}-\frac{1}{66}\)=\(\frac{5}{66}\)
a. \(C=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\)
\(=\frac{1}{11}-\frac{1}{66}=\frac{5}{66}\)
b. \(D=\frac{2}{3}.\left(\frac{3}{1.4}+\frac{4}{4.7}+...+\frac{3}{97.100}\right)\)
\(=\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(=\frac{2}{3}.\left(1-\frac{1}{100}\right)=\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)
\(C=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-....-\frac{1}{66}\)
\(C=\frac{1}{11}-\frac{1}{66}=\frac{5}{66}\)
\(D=\frac{2}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-....-\frac{1}{100}\right)\)
\(D=\frac{2}{3}.\left(1-\frac{1}{100}\right)=\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)
Ta có : 3/ 1 x 6 + 3/6 x 11 + 3/11 x 16 + ...+ 3/96 x 101
= 3/5 x ( 5/1 x 6 + 5/6 x 11 + 5/11 x 16 + ...+ 5/96 x 101 )
= 3/5 x ( 1 - 1/6 + 1/6 - 1/11 + 1/11 - 1/16 + ...+ 1/96 - 1/101 )
= 3/5 x ( 1 - 1/101 )
= 3/5 x 100/101
= 60/101
Tham khảo nha !!!
\(1+2+3+...+n=\frac{n\left(n+1\right)}{2}\)
\(1+3+5+7+...+\left(2n-1\right)=n^2\)
\(2+4+6+8+...+2n=n\left(n+1\right)\)
Đặt A = \(\dfrac{3}{1.6}+\dfrac{3}{6.11}+...+\dfrac{3}{61.66}\)
=> \(\dfrac{5}{3}A=\dfrac{5}{1.6}+\dfrac{5}{6.11}+...+\dfrac{5}{61.66}\)
=> \(\dfrac{5}{3}A=1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{61}-\dfrac{1}{66}\)
=> \(\dfrac{5}{3}A=1-\dfrac{1}{66}=\dfrac{65}{66}\)
=> A = \(\dfrac{13}{22}\)
@nam nguyen
Đặt :
\(Â=\dfrac{3}{1.6}+\dfrac{3}{6.11}+...............+\dfrac{3}{61.66}\)
\(\Leftrightarrow A.\dfrac{5}{3}=\dfrac{5}{1.6}+\dfrac{5}{6.11}+..............+\dfrac{5}{61.66}\)
\(\Leftrightarrow A\dfrac{5}{3}=1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+.........+\dfrac{1}{61}-\dfrac{1}{66}\)
\(\Leftrightarrow A.\dfrac{5}{3}=1-\dfrac{1}{66}\)
\(\Leftrightarrow A.\dfrac{5}{3}=\dfrac{65}{66}\)
\(\Leftrightarrow A=\dfrac{13}{22}\)