x^3/8 = y^3/64 = z^3/216 và x^2 + y^2 + z^2 = 14
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=4k\end{matrix}\right.\)
Ta có: \(x^2-y^2+2z^2=108\)
\(\Leftrightarrow\left(2k\right)^2-\left(3k\right)^2+2\cdot\left(4k\right)^2=108\)
\(\Leftrightarrow4k^2-9k^2+2\cdot16k^2=108\)
\(\Leftrightarrow k^2=4\)
Trường hợp 1: k=2
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k=2\cdot2=4\\y=3k=3\cdot2=6\\z=4k=4\cdot2=8\end{matrix}\right.\)
Trường hợp 2: k=-2
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k=2\cdot\left(-2\right)=-4\\y=3k=3\cdot\left(-2\right)=-6\\z=4k=4\cdot\left(-2\right)=-8\end{matrix}\right.\)
Theo bài ra ta có
\(\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}=\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
Từ đó => x ; y ; z
Đáng ra làm ttuwngf bước nhưng mình làm tắt
a: \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)
=>\(\left(\dfrac{x}{2}\right)^3=\left(\dfrac{y}{4}\right)^3=\left(\dfrac{z}{6}\right)^3\)
=>\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)
=>\(\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\)
Đặt \(\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}=k\)
=>x=k; y=2k; z=3k
\(x^2+y^2+z^2=14\)
=>\(k^2+4k^2+9k^2=14\)
=>\(14k^2=14\)
=>\(k^2=1\)
=>k=1 hoặc k=-1
TH1: k=1
=>\(x=k=1;y=2k=2\cdot1=2;z=3k=3\cdot1=3\)
TH2: k=-1
=>\(x=k=-1;y=2k=2\cdot\left(-1\right)=-2;z=3k=3\cdot\left(-1\right)=-3\)
b: \(\dfrac{x^3}{8}=\dfrac{y^3}{27}=\dfrac{z^3}{64}\)
=>\(\left(\dfrac{x}{2}\right)^3=\left(\dfrac{y}{3}\right)^3=\left(\dfrac{z}{4}\right)^3\)
=>\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=k\)
=>x=2k; y=3k; z=4k
\(x^2+2y^2-3z^2=-650\)
=>\(\left(2k\right)^2+2\cdot\left(3k\right)^2-3\cdot\left(4k\right)^2=-650\)
=>\(4k^2+18k^2-3\cdot16k^2=-650\)
=>\(-26\cdot k^2=-650\)
=>\(k^2=25\)
=>\(\left[{}\begin{matrix}k=5\\k=-5\end{matrix}\right.\)
TH1: k=5
=>\(x=2\cdot5=10;y=3\cdot5=15;z=4\cdot5=20\)
TH2: k=-5
=>\(x=2\cdot\left(-5\right)=-10;y=3\cdot\left(-5\right)=-15;z=4\cdot\left(-5\right)=-20\)
Theo bài ra ta có : \(x^2+y^2+z^2=14\)
\(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\\ \Rightarrow\left(\dfrac{x}{2}\right)^3=\left(\dfrac{y}{4}\right)^3=\left(\dfrac{z}{6}\right)^3\\ \Rightarrow\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\\ \Rightarrow\left(\dfrac{x}{2}\right)^2=\left(\dfrac{y}{4}\right)^2=\left(\dfrac{z}{6}\right)^2\\ \Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{14}{56}=\dfrac{1}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x^2}{4}=\dfrac{1}{4}\\\dfrac{y^2}{16}=\dfrac{1}{4}\\\dfrac{z^2}{36}=\dfrac{1}{4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^2=1\\y^2=4\\z^2=9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\pm1\\y=\pm2\\z=\pm3\end{matrix}\right.\)
Vậy \(xyz=\left\{\pm1;\pm2;\pm3\right\}\)