K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2022

a, \(A=\dfrac{5n-4-4n+5}{n-3}=\dfrac{n+1}{n-3}=\dfrac{n-3+4}{n-3}=1+\dfrac{4}{n-3}\Rightarrow n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

n-31-12-24-4
n42517-1

 

11 tháng 5 2022

a.\(A=\dfrac{2n+1}{n-3}+\dfrac{3n-5}{n-3}-\dfrac{4n-5}{n-3}\)

\(A=\dfrac{2n+1+3n-5-4n+5}{n-3}\)

\(A=\dfrac{n+1}{n-3}\)

\(A=\dfrac{n-3}{n-3}+\dfrac{4}{n-3}\)

\(A=1+\dfrac{4}{n-3}\)

Để A nguyên thì \(\dfrac{4}{n-3}\in Z\) hay \(n-3\in U\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

n-3=1 --> n=4

n-3=-1 --> n=2

n-3=2 --> n=5

n-3=-2 --> n=1

n-3=4 --> n=7

n-3=-4 --> n=-1

Vậy \(n=\left\{4;2;5;7;1;-1\right\}\) thì A nhận giá trị nguyên

b.hemm bt lèm:vv

11 tháng 4 2023

Ta có : \(A=\dfrac{n+2}{n-5}\)

\(\Rightarrow A=\dfrac{n-5+7}{n-5}=\dfrac{n-5}{n-5}+\dfrac{7}{n-5}\)

\(\Rightarrow A=1+\dfrac{7}{n-5}\)

Để \(A\in Z\Leftrightarrow\dfrac{7}{n-5}\in Z\)

\(\Leftrightarrow\left(n-5\right)\inƯ\left(7\right)\) 

mà \(Ư\left(7\right)=\left(\pm1;\pm7\right)\)

\(\Rightarrow n\in\left(6;4;12;-2\right)\)

\(Vậy...\)

27 tháng 4 2017

ĐỀ SAI: CHỈNH x THÀNH n nhé:

\(A=\dfrac{n+2}{n-5}=\dfrac{n-5+7}{n-5}=1+\dfrac{7}{n-5}\)

Để A nguyên thì \(\dfrac{n+2}{n-5}\)phải nguyên <=> \(\dfrac{7}{n-5}\)nguyên <=> 7 chia hết cho n-5 hay n-5 là Ư(7)

Mà Ư(7)={-7;-1;1;7}

Ta có bảng sau:

n-5 -7 -1 1 7
n -2(TM) 4(TM) 6(TM) 12(TM)

Vậy n={-2;4;6;12} thì A nguyên

27 tháng 4 2017

Để \(A\in Z\) thì \(n+2⋮n-5\)

\(\Rightarrow\left(n-5\right)+7⋮n-5\)

\(n-5⋮n-5\)

\(\Rightarrow7⋮n-5\)

\(\Rightarrow n-5\inƯ\left(7\right)\)

\(\Rightarrow n-5\in\left\{\pm1;\pm7\right\}\)

\(\Rightarrow n\in\left\{6;4;12;-2\right\}\)

Vậy \(n\in\left\{6;4;-2;12\right\}\) thì A \(\in Z.\)

29 tháng 4 2017

BÀi 1

Để A \(\in\) Z

=>\(\left(n+2\right)⋮\left(n-5\right)\)

=>\([\left(n-5\right)+7]⋮\left(n-5\right)\)

=>\(7⋮\left(n-5\right)\)

=>\(n-5\in\left\{1;7;-1;-7\right\}\)

=>\(n\in\left\{6;13;4;-2\right\}\)

Vậy \(n\in\left\{6;13;4;-2\right\}\)

29 tháng 4 2017

Giúp mk nha

Arigatou gozaimasu!

3 tháng 8 2017

Ta có : \(A=\dfrac{n-5}{n+1}=\dfrac{n+1-6}{n+1}=\dfrac{n+1}{n+1}-\dfrac{6}{n+1}\)\(\Rightarrow A=1-\dfrac{6}{n+1}\)

để A tối giản \(\Leftrightarrow1-\dfrac{6}{n+1}\) tối giản

\(\Rightarrow\dfrac{6}{n+1}\) tối giản => ƯCLN (6;n+1)=1

\(\Leftrightarrow n+1\ne6k\Leftrightarrow n\ne6k-1\)

Vậy \(n\ne6k-1\) để A tối giản

tik mik nha !!!

3 tháng 7 2018

1.a) để A là số hữu tỉ thì 2n+3 nguyên và n - 1 khác 0

từ hai điều kiện trên suy ra n nguyên và n khác 1

b) để A nguyên thì 2n+3 ⋮ n - 1

⇒ 2(n - 1) +5 ⋮ n - 1

⇒ 5 ⋮ n - 1

⇒n ∈ {-4; 0; 2; 6}

2. x < y ⇔ \(\dfrac{a}{n}< \dfrac{b}{n}\)

\(\Rightarrow\dfrac{2a}{2n}< \dfrac{a+b}{2n}< \dfrac{2b}{2n}\Leftrightarrow x< z< y\)