K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2017

Ta có : \(A=\dfrac{n-5}{n+1}=\dfrac{n+1-6}{n+1}=\dfrac{n+1}{n+1}-\dfrac{6}{n+1}\)\(\Rightarrow A=1-\dfrac{6}{n+1}\)

để A tối giản \(\Leftrightarrow1-\dfrac{6}{n+1}\) tối giản

\(\Rightarrow\dfrac{6}{n+1}\) tối giản => ƯCLN (6;n+1)=1

\(\Leftrightarrow n+1\ne6k\Leftrightarrow n\ne6k-1\)

Vậy \(n\ne6k-1\) để A tối giản

tik mik nha !!!

11 tháng 5 2022

a, \(A=\dfrac{5n-4-4n+5}{n-3}=\dfrac{n+1}{n-3}=\dfrac{n-3+4}{n-3}=1+\dfrac{4}{n-3}\Rightarrow n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

n-31-12-24-4
n42517-1

 

11 tháng 5 2022

a.\(A=\dfrac{2n+1}{n-3}+\dfrac{3n-5}{n-3}-\dfrac{4n-5}{n-3}\)

\(A=\dfrac{2n+1+3n-5-4n+5}{n-3}\)

\(A=\dfrac{n+1}{n-3}\)

\(A=\dfrac{n-3}{n-3}+\dfrac{4}{n-3}\)

\(A=1+\dfrac{4}{n-3}\)

Để A nguyên thì \(\dfrac{4}{n-3}\in Z\) hay \(n-3\in U\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

n-3=1 --> n=4

n-3=-1 --> n=2

n-3=2 --> n=5

n-3=-2 --> n=1

n-3=4 --> n=7

n-3=-4 --> n=-1

Vậy \(n=\left\{4;2;5;7;1;-1\right\}\) thì A nhận giá trị nguyên

b.hemm bt lèm:vv

29 tháng 4 2017

BÀi 1

Để A \(\in\) Z

=>\(\left(n+2\right)⋮\left(n-5\right)\)

=>\([\left(n-5\right)+7]⋮\left(n-5\right)\)

=>\(7⋮\left(n-5\right)\)

=>\(n-5\in\left\{1;7;-1;-7\right\}\)

=>\(n\in\left\{6;13;4;-2\right\}\)

Vậy \(n\in\left\{6;13;4;-2\right\}\)

29 tháng 4 2017

Giúp mk nha

Arigatou gozaimasu!

22 tháng 4 2016

bạn ơi

a) Để A=\(\frac{n-5}{n+1}\)có giá trị nguyên thì n-5 chia hết cho n+1

=>n+1-6 chia hết cho n+1

=>6 chia hết cho n+1

=>n+1 thuộc Ư(6)={1;2;3;6;-1;-2;-3;-6}

=>n thuộc {0;1;2;5;-2;-3;-4;-7}

Vậy.....

1.Cho A=\(\dfrac{n+1}{n-2}\)

a)Tìm n Z để A là phân số

Để A là phân số thì n+1;n-2 ∈​ Z ; n-2 khác 0

<=> n ∈​ Z; n >2

Vậy A là phân số <=> n ∈​ Z; n>2

b)Tìm nZ để AZ

A ∈​ Z <=> n+1 chia hết cho n-2

<=>n-2+3 chia hết cho n-2

<=>3 chia hết cho n-2 ( vì n-2 chia hết cho n-2)

<=>n-2 ∈​ Ư(3)={1;-1;3;-3}

<=>n ∈​ {3;1;5;-1}

Vậy để A Z thì n ∈​ {3;1;5;-1}

c)Tìm NZ để A lớn nhất

2.Cho B=\(\dfrac{3n+2}{4n+3}\)

Chứng minh B tối giản

1c) Tìm n∈Z để A lớn nhất:

Ta có A=\(\dfrac{n+1}{n-2}\)=\(\dfrac{n-2+3}{n-2}\)=\(\dfrac{n-2}{n-2}\)+\(\dfrac{3}{n-2}\)=1+\(\dfrac{3}{n-2}\)

=> A lớn nhất <=> \(\dfrac{3}{n-2}\) lớn nhất

<=>n-2 nhỏ nhất; n-2>0; n-2∈Z

<=>n-2=1

<=>n=3

Vậy A lớn nhất <=> n-3

2 tháng 2 2021

\(a)\,\,A=\dfrac{13}{21} \Leftrightarrow \dfrac{2n+3}{4n+1}=\dfrac{13}{21} \\ \Leftrightarrow 21(2n+3)=13(4n+1)\\\Leftrightarrow 42n+63=52n+13\\\Leftrightarrow 42n-52n=13-63 \\\Leftrightarrow -10n=-50\\\Leftrightarrow n=(-50):(-10)\\\Leftrightarrow n=5\)