tìm số tự nhiên n biết:
a) 3n+2 chia hết cho n-1
b) 12-3n chia hết cho 8-n
c)n^2+2n+7 chia hết cho 2n+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm số tự nhiên n biết:
a) 3n+2 chia hết cho n-1
b) 12-3n chia hết cho 8-n
c)n^2+2n+7 chia hết cho 2n+2
a: =>6n+10 chia hết cho 2n-1
=>6n-3+13 chia hết cho 2n-1
=>2n-1 thuộc {1;-1;13;-13}
mà n>=0
nên n thuộc {1;0;7}
b: 80 chia hết cho n
48 chia hết cho n
=>n thuộc ƯC(80;48)
=>n thuộc Ư(16)
mà n<8
nên n thuộc {1;2;4}
c: n chia hết cho 12;50;60
=>n thuộc BC(12;50;60)
=>n thuộc B(300)
mà 0<n<6000
nên \(n\in\left\{300;600;...;5700\right\}\)
a. n + 4 \(⋮\) n
\(\Rightarrow\left\{{}\begin{matrix}n⋮n\\4⋮n\end{matrix}\right.\)
4 \(⋮\) n
\(\Rightarrow\) n \(\in\) Ư (4) = {1; 2; 4}
\(\Rightarrow\) n \(\in\) {1; 2; 4}
b. 3n + 11 \(⋮\) n + 2
3n + 6 + 5 \(⋮\) n + 2
3(n + 2) + 5 \(⋮\) n + 2
\(\Rightarrow\left\{{}\begin{matrix}3\left(n+2\right)\text{}⋮n+2\\5⋮n+2\end{matrix}\right.\)
\(\Rightarrow\) 5 \(⋮\) n + 2
\(\Rightarrow\) n + 2 \(\in\) Ư (5) = {1; 5}
n + 2 | 1 | 5 |
n | vô lí | 3 |
\(\Rightarrow\) n = 3
a,
Ta có: 4n-5 chia hết cho 2n-1
=>4n-2-3 chia hết cho 2n-1
=>2.(2n-1)-3 chia hết cho 2n-1
=>3 chia hết cho 2n-1
=>2n-1=Ư(3)=(-1,-3,1,3)
=>2n=(0,-2,2,4)
=>n=(0,-1,1,2)
Vậy n=0,-1,1,2
a,
Theo bài ra ta có: 2n +5 chia hết cho n+2
Mà 2n chia hết cho n
Suy ra: ( 2n +5)- 2(n+2) chia hết cho n+2
2n +5 - 2n-2 chia hết cho n+2
3 chia hết cho n+2
Suy ra: n+2 thuộc Ư(3) = { 1,3}
Ta có :
n+2=1 ( phép tính ko thực hiện được)
n+2=3 vậy n=1
Vậy ta có số tự nhiên n là 1
b) ( 2n + 9 ) chia hết cho ( n + 1 )
=> 2n + 2 + 7 chia hết cho ( n + 1 )
=> 2 . ( n + 1 ) chia hết cho ( n + 1 ) mà 2 . ( n + 1 ) chia hết cho ( n + 1 )
=> 7 chia hết cho ( n + 1 ) => ( n + 1 ) thuộc Ư ( 7 ) = { 1 , 7 }
Vậy n thuộc { 1 , 7 }
a) n + 2 chia hết cho n - 1
=> n - 1 + 3 chia hết cho n - 1
Do n - 1 chia hết cho n - 1 => 3 chia hết cho n - 1
Mà n thuộc N => n - 1 > hoặc = -1
=> n - 1 thuộc {-1 ; 1 ; 3}
=> n thuộc {0 ; 2 ; 4}
Những câu còn lại lm tương tự
Giải:
a) \(n+2⋮n-1\)
\(\Rightarrow\left(n-1\right)+3⋮n-1\)
\(\Rightarrow3⋮n-1\)
\(\Rightarrow n-1\in\left\{\pm1;\pm3\right\}\)
+) \(n-1=1\Rightarrow n=2\)
+) \(n-1=-1\Rightarrow n=0\)
+) \(n-1=3\Rightarrow n=4\)
+) \(n-1=-3\Rightarrow n=-2\)
Vậy \(n\in\left\{2;0;4;-2\right\}\)
b) \(2n+7⋮n+1\)
\(\Rightarrow\left(2n+2\right)+5⋮n+1\)
\(\Rightarrow2\left(n+1\right)+5⋮n+1\)
\(\Rightarrow5⋮n+1\)
\(\Rightarrow n+1\in\left\{\pm1;\pm5\right\}\)
+) \(n+1=1\Rightarrow n=0\)
+) \(n+1=-1\Rightarrow n=-2\)
+) \(n+1=3\Rightarrow n=2\)
+) \(n+1=-3\Rightarrow n=-4\)
Vậy \(n\in\left\{0;-2;2;-4\right\}\)
Vì 3 n chia hết cho (5-2n)
=>2.3n+3(5-2n)=15 chia hết cho 5-2n
=>5-2n thuộc Ư(15)={1,3,5,15,-1,-3-5-15}
Mặt khác 5-2n nhỏ hơn hoặc bằng 5
5-2n thuộc {-15,-5,-3,-1,1,3,5}
=>N thuộc { 10,5,4,3,2,1,0}
Vì 3n chia hết cho 5-2n
=>2.3n+3(5-2n)=15 chia hết cho 5 - 2n
=> 5-2n thuộc U (15)€{1,3,5,15,-1,-3,-5,-15}
Mặt khác 5 trừ 2 n nhỏ hơn hoặc bằng 5
=>5-2n€{-15,-5,-3,-1,1,3,5}
=>N€{10,5,4,3,2,1,0}
\(3n+2⋮n-1\)
\(3\left(n-1\right)+1⋮n-1\)
\(1⋮n-1\)hay \(n-1\inƯ\left(1\right)=\left\{\pm1\right\}\)