K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2017

Đặt \(a=x^{1000},b=y^{1000}\)
\(\Rightarrow a+b=6,912\)\(a^2+b^2=33,76244.\)
Ta có \(\text{a+b= 6,912}\)
\(\Rightarrow\) \(\left(a+b\right)^2=6,912^2\)
\(\Leftrightarrow \)\(a^2+2ab+b^2=47,775744\)
\(\Leftrightarrow ab=\frac{47,775744-30,76244}{2}\)
\(\Leftrightarrow ab=8,506052\)
\(\Leftrightarrow ab(a+b)=58,797978624\)
Ta lại có \(a^3+b^3+ab(a+b)=(a+b)(a^2+b^2)\)
\(\Leftrightarrow \)\(a^3+b^3=174,5680067\)
Vậy \(x^{3000}+y^{3000}=174,5680067\)

2 tháng 11 2023

Có: \(\left\{{}\begin{matrix}x^2+2y+1=0\\y^2+2z+1=0\\z^2+2x+1=0\end{matrix}\right.\)

\(\Rightarrow x^2+2y+1+y^2+2z+1+z^2+2x+1=0\)

\(\Rightarrow\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+\left(z^2+2z+1\right)=0\)

\(\Rightarrow\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0^{\left(1\right)}\)

Lại có:

 \(\left\{{}\begin{matrix}\left(x+1\right)^2\ge0\forall x\\\left(y+1\right)^2\ge0\forall y\\\left(z+1\right)^2\ge0\forall z\end{matrix}\right.\Rightarrow\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2\ge0\forall x;y;z^{\left(2\right)}\)

Từ (1) và (2) \(\Rightarrow\left\{{}\begin{matrix}x+1=0\\y+1=0\\z+1=0\end{matrix}\right.\Rightarrow x=y=z=-1\)

Thay \(x=y=z=-1\) vào \(A\), ta được:

\(A=\left(-1\right)^{2000}+\left(-1\right)^{2000}+\left(-1\right)^{2000}\)

\(=1+1+1=3\)

\(\text{#}\mathit{Toru}\)

21 tháng 7 2017

100 x 1000 x 200 x 2000 = 40000000000

21 tháng 7 2017

40000000000

15 tháng 7 2016

Ta có : \(\left(x^{1000}+y^{1000}\right)=6,912\Rightarrow x^{2000}+y^{2000}+2\left(xy\right)^{1000}=6,912^2\Leftrightarrow\left(xy\right)^{1000}=\frac{6,912^2-33,76244}{2}\)

Lại có : \(x^{3000}+y^{3000}=\left(x^{1000}+y^{1000}\right)^3-3\left(xy\right)^{1000}\left(x^{1000}+y^{1000}\right)\)

\(=6,912^3-3.\frac{6,912^2-33,76244}{2}.6,912\)

Đến đây bạn bấm máy tính nha ^^ Đề thi CASIO đúng không?

16 tháng 7 2016

ukm. Cám ơn bạn

10 tháng 3 2016

Đặt a=x^670  b=y^670 tta có a+b=6.912 và a+b2=33.76244

suy ra a3 + b3=x^2013+y^2010suy ra(a+b)2=6.9122

a^2+2ab+b^2=47.775744 suy ra ab=7.006652

a^3+b^3=x^2010+y^2010=(a+b)(a^2-ab+b^2)=6.912*(33.76244+7.006652)=281.7959639

bạn tính lại nhé

9 tháng 10 2016

Đặt a = x1000  , b = y1000. Theo bài ra ta có : a + b = 6,912 và a2 + b2 = 33,76244

       => x3000 + y3000 =   a3 + b3 = ( a+b)3 – 3ab ( a + b)

                mà:  3ab = 3\(\frac{3\left(a+b\right)^2-\left(a^2+b^2\right)}{2}\)

=>  a3 + b3 = (a +b)3 – 3 \(\frac{3\left(a+b\right)^2-\left(a^2+b^2\right)}{2}\left(a+b\right)\)

=> Thay số tính trên máy ta được: x3000 + y300= 184,9360067

9 tháng 10 2016

bạn ơi phần mà mình chưa hiểu

20 tháng 1 2016

Quan trọng cách làm sao

20 tháng 1 2016

mình hỏi cách làm cơ chứ kq mình pt

 

6 tháng 10 2017

Giải
Đặt x^1000 =a, y^1000=b
ta có a+b=6912
a^2+b^2=3376244
cần tính a^3+b^3= (a+b)(a^2-ab+b^2). chỉ còn thiếu ab nữa xong.
mà ab= [(a+b)^2 -(a^2+b^2)]/2.
Vậy a^3+b^3= (a+b) [ 3(a^2+b^2)/2 + (a+b)^2 /2 ]. thay vào là tính dc

8 tháng 10 2017

Bạn cũng thi casio à? Mình cũng thi, lúc sáng mới khảo sát trúng bài này đơ luôn khocroi

27 tháng 11 2016

Đặt \(\hept{\begin{cases}x^{1000}=a\\y^{1000}=b\end{cases}}\)

Thì ta có

\(\hept{\begin{cases}a+b=6,912\\a^2+b^2=33,76244\end{cases}}\)

Ta có (a + b)2 = a2 + b2 + 2ab = 6,9122

Từ đây suy ra được ab có ab từ đây đễ đàng suy ra được

a3 + b3 = (a + b)(a2 - ab + b2