1) Tính bằng cách thuận tiện
a) 4.\(\left(\frac{-1}{2}\right)^3\) + 3. \(\left(\frac{-1}{2}\right)^2\)- 2 . \(\left(\frac{-1}{2}\right)\)- \(2^0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\begin{array}{l}{\left( {\frac{{ - 1}}{2}} \right)^5} = \frac{{{{\left( { - 1} \right)}^5}}}{{{2^5}}} = \frac{{ - 1}}{{32}};\\{\left( {\frac{{ - 2}}{3}} \right)^4} = \frac{{{{\left( { - 2} \right)}^4}}}{{{3^4}}} = \frac{{16}}{{81}};\\{\left( { - 2\frac{1}{4}} \right)^3} = {\left( {\frac{{ - 9}}{4}} \right)^3} = \frac{{{{\left( { - 9} \right)}^3}}}{{{4^3}}} = \frac{{-729}}{{64}};\\{\left( { - 0,3} \right)^5} = {\left( {\frac{{ - 3}}{{10}}} \right)^5} = \frac{{ - 243}}{{100000}};\\{\left( { - 25,7} \right)^0} = 1\end{array}\)
b)
\(\begin{array}{l}{\left( { - \frac{1}{3}} \right)^2} = \frac{1}{9};\\{\left( { - \frac{1}{3}} \right)^3} = \frac{{ - 1}}{{27}};\\{\left( { - \frac{1}{3}} \right)^4} = \frac{1}{{81}};\\{\left( { - \frac{1}{3}} \right)^5} = \frac{{ - 1}}{{243}}.\end{array}\)
Nhận xét:
+ Luỹ thừa của một số hữu tỉ âm với số mũ chẵn là một số hữu tỉ dương.
+ Luỹ thừa của một số hữu tỉ âm với số mũ lẻ là một số hữu tỉ âm.
a) \(\frac{\left(-1\right)}{4}^2+\frac{3}{8}.\left(\frac{-1}{6}\right)-\frac{3}{16}:\left(\frac{-1}{2}\right)=\left(\frac{-1}{4}\right)^2+\left(\frac{-3}{68}\right)-\left(\frac{-3}{8}\right)=\left(\frac{1}{16}\right)+\left(\frac{-3}{68}\right)-\left(\frac{-3}{8}\right)=\frac{5}{272}-\left(\frac{-3}{8}\right)=\frac{107}{272}\)
\(a,\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=\frac{1}{2}-\frac{1}{6}=\frac{1}{3}\)
\(b,\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\)
\(=\frac{1\times2\times3}{2\times3\times4}=\frac{1}{4}\)
a)\(\left(\frac{5}{2}-\frac{1}{3}\right).\frac{9}{2}-\frac{1}{6}=\frac{13}{6}.\frac{9}{2}-\frac{1}{6}=\frac{117}{12}-\frac{2}{12}=\frac{115}{12}\)
b)\(3\frac{1}{4}.\frac{5}{7}+\frac{2}{7}.3\frac{1}{4}-1\frac{1}{2}=3\frac{1}{4}.\left(\frac{5}{7}+\frac{2}{7}\right)-\frac{3}{2}=\frac{13}{4}-\frac{6}{4}=\frac{7}{4}\)
c)\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{2004}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{2003}{2004}=\frac{1}{2004}\)
a. \(\left(\frac{5}{2}-\frac{1}{3}\right).\frac{9}{2}-\frac{1}{6}=\frac{13}{6}.\frac{9}{2}-\frac{1}{6}=\frac{39}{4}-\frac{1}{6}=\frac{115}{12}\)
b. \(3\frac{1}{4}.\frac{5}{7}+\frac{2}{7}.3\frac{1}{4}-1\frac{1}{2}=3\frac{1}{4}.\left(\frac{5}{7}+\frac{2}{7}\right)-1\frac{1}{2}\)
= \(\frac{13}{4}.1-\frac{3}{2}=\frac{13}{4}-\frac{3}{2}=\frac{7}{4}\)
c. \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)......\left(1-\frac{1}{2004}\right)\)
= \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}......\frac{2003}{2004}=\frac{1}{2004}\)
Bài 1:
1) \(\frac{11}{3}\): 3\(\frac{1}{3}\)- 3
= \(\frac{11}{3}\): \(\frac{10}{3}\)- 3
= \(\frac{11}{3}\). \(\frac{3}{10}\)- 3
= \(\frac{11}{10}\)- 3
= \(\frac{-19}{10}\)
2) \(\frac{5}{6}\): \(\frac{3}{52}\) - \(\frac{5}{6}\). 47\(\frac{1}{3}\)
= \(\frac{5}{6}\) . \(\frac{52}{3}\)- \(\frac{5}{6}\). 47\(\frac{1}{3}\)
= \(\frac{5}{6}\).(\(\frac{52}{3}\)- 47\(\frac{1}{3}\))
= \(\frac{5}{6}\).( -30)
= -25
\(4.\left(\frac{-1}{2}\right)^3+3.\left(\frac{-1}{2}\right)^2-2.\left(\frac{-1}{2}\right)-2^0\)
\(=\frac{-1}{2}+\frac{3}{4}-\left(-1\right)-1\)
\(=\frac{-2}{4}+\frac{3}{4}-\left(-1\right)-1\)
\(=\frac{1}{4}-\left(-1\right)-1\)
\(=\frac{1}{4}-\left(\frac{-4}{4}\right)-\frac{4}{4}\)
\(=\frac{5}{4}-\frac{4}{4}\)
\(=\frac{1}{4}\)