Cho \(\dfrac{a-b}{b-c}=\dfrac{c-d}{d-a}\)
Chứng minh rằng a=c hoặc a+c=b+d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với ( với a, b, c, d khác 0, và c \(\ne\pm d\) ). Chứng minh rằng hoặc \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\) ?
Theo tính chất dãy tỉ số bằng nhau, ta có:
a/b = b/c = c/d = (a + b + c)/(b + c + d)
--> ((a + b + c)/(b + c + d))^3 = a^3/b^3
Cần chứng minh:
a^3/b^3 = a/d
<=> a^3/b^3 = a^3/(a^2.d)
--> b^3 = a^2.d
Mà ad = bc (do a/b = c/d)
--> b^3 = abc
<=> b^2 = ac (luôn đúng do a/b = b/c)
--> đpcm
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\)
\(\Leftrightarrow\left(a^2+b^2\right)cd=ab\left(c^2+d^2\right)\)
\(\Leftrightarrow a^2cd-b^2cd=abc^2+abd^2\)
\(\Leftrightarrow a^2cd-abc^2-abd^2+b^2cd=0\)
\(\Leftrightarrow ac\left(ad-bc\right)-bd\left(ad-bc\right)=0\)
\(\Leftrightarrow\left(ac-bd\right)\left(ad-bc\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}ac-bd=0\\ad-bc=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}ac=bd\\ad=bc\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{a}{b}=\dfrac{d}{c}\\\dfrac{a}{b}=\dfrac{c}{d}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}\dfrac{a}{b}=\dfrac{d}{c}\\\dfrac{a}{b}=\dfrac{c}{d}\end{matrix}\right.\) (ĐPCM)
ta có \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\Rightarrow ab.\left(c^2+d^2\right)=cd.\left(a^2+b^2\right)\)
suy ra \(ab.\left(c^2+d^2\right)\)=\(abc^2+abd^2=acbc+adbd\) (1)
\(cd\left(a^2+b^2\right)=a^2cd+b^2cd+bcbd\) =acad+bcbd (2)
(1);(2) suy ra acbc+adbd=acad+bcbd
nên bc+ad=bc+ad
suy ra ad=bc nên \(\dfrac{a}{b}=\dfrac{c}{d}\)
:)
- Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\) (gt)
=>\(ad< bc\)
=>\(ad+ab< bc+ab\)
=>\(a\left(b+d\right)< b\left(a+c\right)\)
=>\(\dfrac{a}{b}< \dfrac{a+c}{b+d}\) (1)
- Ta có: \(\dfrac{c}{d}>\dfrac{a}{b}\) (gt)
=>\(bc>ad\)
=>\(bc+cd>ad+cd\)
=>\(c\left(b+d\right)>d\left(a+c\right)\)
=>\(\dfrac{c}{d}>\dfrac{a+c}{b+d}\) (2)
- Từ (1) và (2) suy ra: \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
a: Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
nên \(\dfrac{a}{c}=\dfrac{b}{d}\)
d: Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
nên \(\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)