\(\Delta\)ABC đường cao AA' ,BB' ,CC'
chứng minh AB' . BC' .CA' =AC' . BA' .CB'
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giácBC'B'C có
góc BC'C=góc BB'C=90 độ
nên BC'B'C là tứ giác nội tiếp
=>góc AB'C'=góc ABC
=>ΔABC đồng dạng với ΔAB'C'
b:\(S=\dfrac{1}{2}\cdot4\cdot8\cdot sin30^0=2\cdot8\cdot\dfrac{1}{2}=8\left(cm^2\right)\)
Lời giải:
Kéo dài $BG$ cắt $AC$ tại $K$. Kẻ $KK'\perp d$
Trên $BG$ lấy trung điểm $I$. Kẻ $II'\perp d$
Vận dụng công thức đường trung bình trong hình thang ta có:
Xét hình thang $BGG'B'$ có đtb $II'$ thì:
$II'=\frac{BB'+GG'}{2}(1)$
Xét hình thang $AA'C'C$ có đường trung bình $KK'$ thì:
$KK'=\frac{AA'+CC'}{2}(2)$
Xét hình thang $II'KK'$ có đường trung bình $GG'$ thì:
$GG'=\frac{II'+KK'}{2}(3)$
Từ $(1);(2);(3)$ suy ra:
$GG'=\frac{BB'+GG'+AA'+CC'}{4}$
$\Rightarrow GG'=\frac{AA'+BB'+CC'}{3}$
Ta có đpcm.
Câu 1 bạn cộng vào A 4 đơn vị còn mỗi phân thức bên vế phải thì cộng mỗi cái bàng một đơn vị, sau đó sẽ có 2 phân thức tử bằng a+b và 2 phân thức tử bằng c+d, bạn đặt ra ngoài làm nhân tử chung, bên trong ngoặc sẽ là 1/a+b + 1/b+c, bạn áp dụng bất đẳng thức 1/a + 1/b >= 4/a+b sẽ được bên trong ngoặc là 4/a+b+c+d, nhân 2 cái ở ngoài vào, rút gọn phân thức đi sẽ được kết quả là A+4 >= 4 nên A>=0