Cho biểu thức B= \(\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}\)
a) Rút gọn biểu thức B
b) Tìm giá trị của x để B=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}\)
\(A=\sqrt{x^2-6x+3^2}-\sqrt{x^2+6x+3^2}\)
\(A=\sqrt{\left(x-3\right)^2}-\sqrt{\left(x+3\right)^2}\)
b)\(\sqrt{\left(x-3\right)^2}-\sqrt{\left(x+3\right)^2}=1\)
\(TH1:x-3>=0\)
\(< =>x+3>=0\)
\(\left|x-3\right|-\left|x+3\right|=1\)
\(x-3-x-3=1\)
\(-6=1\)(loại)
\(TH2:x-3< =0\)
\(x+3>=0\)
\(< =>\left|x-3\right|-\left|x+3\right|=1\)
\(3-x-x-3\)
\(-2x=1\)
\(x=-\frac{1}{2}\left(TM\right)\)
\(TH3:x-3< =0\)
\(x+3< =0\)
\(< =>\left|x-3\right|-\left|x+3\right|=1\)
\(3-x+X+3=1\)
\(6=1\)(loại)
\(< =>x=\left\{\frac{1}{2}\right\}\)để \(A=1\)
\(a,A=\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}.\)
\(A=\sqrt{\left(x-3\right)^2}-\sqrt{\left(x+3\right)^2}.\)
\(A=\left(x-3\right)-\left(x+3\right)\)
\(b,\) Ta có : \(A=1=\left(x-3\right)-\left(x+3\right)\)
\(\Leftrightarrow1=x-3-x-3\Leftrightarrow1=-6\left(ko\right)tm\)
Vậy ko có giá trị của x.
1. \(x=\frac{1}{9}\) thỏa mãn đk: \(x\ge0;x\ne9\)
Thay \(x=\frac{1}{9}\) vào A ta có:
\(A=\frac{\sqrt{\frac{1}{9}}+1}{\sqrt{\frac{1}{9}}-3}=-\frac{1}{2}\)
2. \(B=...\)
\(B=\frac{3\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{4x+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{3x-9\sqrt{x}+x+3\sqrt{x}-4x-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
3. \(P=A:B=\frac{\sqrt{x}+1}{\sqrt{x}-3}:\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(P=\frac{\sqrt{x}+3}{-6}\)
Vì \(\sqrt{x}+3\ge3\forall x\)\(\Rightarrow\frac{\sqrt{x}+3}{-6}\le\frac{3}{-6}=-\frac{1}{2}\)
hay \(P\le-\frac{1}{2}\)
Dấu "=" xảy ra <=> x=0
a: \(A=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{x-9}=\dfrac{-3\sqrt{x}-9}{x-9}\)
\(=\dfrac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{-3}{\sqrt{x}-3}\)
b: A=1/3
=>\(\dfrac{-3}{\sqrt{x}-3}=\dfrac{1}{3}\)
=>căn x-3=-9
=>căn x=-6(loại)
c: căn x-3>=-3
=>3/căn x-3<=-1
=>-3/căn x-3>=1
Dấu = xảy ra khi x=0
Câu 1:
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)
a) Thay x=16 vào B, ta được:
\(B=\dfrac{1}{\sqrt{16}-3}=\dfrac{1}{4-3}=1\)
Vậy: Khi x=16 thì B=1
b) Ta có: M=A-B
\(=\dfrac{x+3}{x-9}+\dfrac{2}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-3}\)
\(=\dfrac{x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x+3+2\sqrt{x}-6-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x+\sqrt{x}-6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x+3\sqrt{x}-2\sqrt{x}-6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)-2\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\)
c) Để \(M=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\) thì \(\dfrac{\sqrt{x}-2}{\sqrt{x}-3}=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)=\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)\)
\(\Leftrightarrow x-4=x-2\sqrt{x}-3\)
\(\Leftrightarrow-2\sqrt{x}-3=-4\)
\(\Leftrightarrow-2\sqrt{x}=-1\)
\(\Leftrightarrow\sqrt{x}=\dfrac{1}{2}\)
hay \(x=\dfrac{1}{4}\)(thỏa ĐK)
Vậy: Để \(M=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\) thì \(x=\dfrac{1}{4}\)
Câu 2:
b) Gọi thời gian tổ 1 hoàn thành công việc khi làm một mình là x(giờ)
thời gian tổ 2 hoàn thành công việc khi làm một mình là y(giờ)
(Điều kiện: x>12; y>12)
Trong 1 giờ, tổ 1 làm được: \(\dfrac{1}{x}\)(công việc)
Trong 1 giờ, tổ 2 làm được: \(\dfrac{1}{y}\)(công việc)
Trong 1 giờ, hai tổ làm được: \(\dfrac{1}{12}\)(công việc)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\)(1)
Vì khi tổ 1 làm trong 2 giờ, tổ 2 làm trong 7 giờ thì hai tổ hoàn thành được một nửa công việc nên ta có phương trình: \(\dfrac{2}{x}+\dfrac{7}{y}=\dfrac{1}{2}\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{2}{x}+\dfrac{7}{y}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{2}{y}=\dfrac{1}{6}\\\dfrac{2}{x}+\dfrac{7}{y}=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-5}{y}=\dfrac{-1}{3}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=15\\\dfrac{1}{x}+\dfrac{1}{15}=\dfrac{1}{12}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{60}\\y=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=60\\y=15\end{matrix}\right.\)(thỏa ĐK)
Vậy: Tổ 1 cần 60 giờ để hoàn thành công việc khi làm một mình
Tổ 2 cần 15 giờ để hoàn thành công việc khi làm một mình
giải phương trình
a)\(\sqrt{x^8}=256\) b)\(\sqrt{x^2-2x+1}=x-1\)
a/ \(A=\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}=\sqrt{\left(x-3\right)^2}-\sqrt{\left(x+3\right)^2}\)
\(=\left|x-3\right|-\left|x+3\right|=\left|x-3\right|-x-3\)
Nếu x\(\ge\)3\(\Rightarrow\left|x-3\right|=x-3\Rightarrow A=x-3-x-3=-6\)
Nếu x<3\(\Rightarrow\left|x-3\right|=3-x\Rightarrow A=3-x-x-3=-2x\)
b/ Có A=1\(\Rightarrow-2x=1\Leftrightarrow x=\frac{-1}{2}\)
a) \(A=|x-3|-|x+3|\)
*TH1 : Với x < -3, ta có: A = 3 - x + x + 3 = 6
*TH2 : Với -3 < x < 3, ta có: A = 3 - x - x -3 = -2x
*TH3 : Với x > 3, ta có: A = x - 3 - x - 3 = -6
b) Để A = 1, ta thấy TH1 và TH3 không t/m nên A = -2x =1
=> \(x=-\frac{1}{2}\) (t/m)
Vậy....
\(B=\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}\)
\(B=\sqrt{\left(x-3\right)^2}-\sqrt{\left(x+3\right)^2}\)
\(B=\left|x-3\right|-\left|x+3\right|\)
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x< -3\\B=-x+3+x+3=6\end{matrix}\right.\\\left\{{}\begin{matrix}-3\le x< 3\\B=-x+3-x-3=-2x\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge3\\B=x-3-x-3=-6\end{matrix}\right.\end{matrix}\right.\)
b)
\(B=1\Leftrightarrow-3\le x< 3\Rightarrow B=-2x=1\Rightarrow x=-\dfrac{1}{2}̸\)