K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho \(\dfrac{a^{2}}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}=\dfrac{16}{17}\). Tính \(\dfrac{a^{2}}{c+a}+\dfrac{b^2}{a+b}+\dfrac{c^2}{b+c}\) Bài 2: Một người nông dân bán số dừa như sau: Lần thứ nhất bán 9 trái và 1/6 số dừa còn lại. Lần thứ hai bán 18 trái và 1/6 số dừa còn lại. Lần thứ ba bán 27 trái và 1/6 số dừa còn lại. Với cách bán đó thì bán lần sau cũng vừa hết số dừa. Biết rằng số dừa bán mỗi lần đều bằng...
Đọc tiếp

Bài 1: Cho \(\dfrac{a^{2}}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}=\dfrac{16}{17}\). Tính \(\dfrac{a^{2}}{c+a}+\dfrac{b^2}{a+b}+\dfrac{c^2}{b+c}\)

Bài 2: Một người nông dân bán số dừa như sau:
Lần thứ nhất bán 9 trái và 1/6 số dừa còn lại.
Lần thứ hai bán 18 trái và 1/6 số dừa còn lại.
Lần thứ ba bán 27 trái và 1/6 số dừa còn lại.
Với cách bán đó thì bán lần sau cũng vừa hết số dừa. Biết rằng số dừa bán mỗi lần đều bằng nhau.
Hỏi người nông dân đã bán bao nhiêu lần và số dừa đã thu hoạch là bao nhiêu?
Bài 3: Trong một cuộc thi đấu cờ quốc tế ở trường phổ thông, có 2 bạn học sinh lớp 7 và một số học sinh lớp 8 tham dự. Theo diều lệ cuộc thi, 2 đấu thủ bất kì đều phải đấu với nhau một trận, người thắng được 1điểm, người thua được 0 điểm, nếu hòa mỗi người được 0.5 điểm.
Hỏi có bao nhiêu bạn học sinh lớp 8 tham dự, biết tổng số điểm 2 bạn lớp 7 nhận được là 8 điểm, còn tất cả học sinh lớp 8 nhận được số điểm bằng nhau.

0
14 tháng 2 2022

a/(b+c) + b/(a+c) + c/(a+b) = a^2/(ab+ac) + b^2/(ba+bc) + c^2/(ac+bc) >=

(a+b+c)^2/(2.(ab+bc+ac) (buhihacopxki dạng phân thức)

>= (3.(ab+bc+ac)/(2(ab+bc+ac) =3/2

 

a^2/(b^2+c^2) + b^2/(a^2+c^2) + c^2/(a^2+b^2) >= (a+b+c)^2/(2.(a^2+b^2+c^2) (buhihacopxki dạng phân thức)

>= 3(a^2+b^2+c^2) / 2(a^2+b^2+c^2) >=3/2 

 

15 tháng 2 2022

\(\Leftrightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}-\dfrac{3}{2}\ge0\)

\(\Leftrightarrow\left(\dfrac{a}{b+c}-\dfrac{1}{2}\right)+\left(\dfrac{b}{c+a}-\dfrac{1}{2}\right)+\left(\dfrac{c}{a+b}-\dfrac{1}{2}\right)\ge0\)

\(\Leftrightarrow\left(\dfrac{2a-b-c}{2\left(b+c\right)}\right)+\left(\dfrac{2b-a-c}{2\left(a+c\right)}\right)+\left(\dfrac{2c-a-b}{2\left(a+b\right)}\right)\ge0\)

\(\Leftrightarrow\dfrac{a-b+a-c}{2\left(b+c\right)}+\dfrac{b-a+b-c}{2\left(a+c\right)}+\dfrac{c-a+c-b}{2\left(a+b\right)}\ge0\)

\(\Leftrightarrow\dfrac{a-b}{2\left(b+c\right)}+\dfrac{a-c}{2\left(b+c\right)}+\dfrac{b-a}{2\left(a+c\right)}+\dfrac{b-c}{2\left(a+c\right)}+\dfrac{c-a}{2\left(a+b\right)}+\dfrac{c-b}{2\left(a+b\right)}\ge0\)\(\Leftrightarrow\left(a-b\right)\left[\dfrac{1}{2\left(b+c\right)}-\dfrac{1}{2\left(a+c\right)}\right]+\left(a-c\right)\left[\dfrac{1}{2\left(b+c\right)}-\dfrac{1}{2\left(a+b\right)}\right]+\left(b-c\right)\left[\dfrac{1}{2\left(a+c\right)}-\dfrac{1}{2\left(a+b\right)}\right]\ge0\)

ta có: a,b,c là 3 số dương bất kì nên ta giả sử \(a\ge b\ge c\)

\(\Rightarrow a+c\ge b+c\)

\(\Leftrightarrow2\left(a+c\right)\ge2\left(b+c\right)\)

\(\Leftrightarrow\dfrac{1}{2\left(a+c\right)}\le\dfrac{1}{2\left(b+c\right)}\)

\(\Leftrightarrow\dfrac{1}{2\left(a+c\right)}-\dfrac{1}{2\left(b+c\right)}\ge0\)

Mà \(a\ge b\Rightarrow a-b\ge0\)

\(\Rightarrow\left(a-b\right)\left[\dfrac{1}{2\left(b+c\right)}-\dfrac{1}{2\left(a+c\right)}\right]\ge0\left(1\right)\)

Chứng minh tương tự, ta có:

\(\left(a-c\right)\left[\dfrac{1}{2\left(b+c\right)}-\dfrac{1}{2\left(a+b\right)}\right]\ge0\left(2\right)\)

\(\left(b-c\right)\left[\dfrac{1}{2\left(a+c\right)}-\dfrac{1}{2\left(a+b\right)}\right]\ge0\left(3\right)\)

Cộng từng vế (1);(2);(3)  \(\Rightarrow\) luôn đúng

\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\ge\dfrac{3}{2}\) 

 

2:

a: Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{24}{9}=\dfrac{8}{3}\)

=>x=16/3; y=8; z=32/3

A=3x+2y-6z

=3*16/3+2*8-6*32/3

=16+16-64

=-32

b: Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{z}{7}=\dfrac{x-y+z}{5-6+7}=\dfrac{6\sqrt{2}}{6}=\sqrt{2}\)

=>x=5căn 2; y=6căn 2; y=7căn 2

B=xy-yz

=y(x-z)

=6căn 2(5căn 2-7căn 2)

=-6căn 2*2căn 2

=-24

10 tháng 8 2023

bài 1 a)áp dụng dãy tỉ số bằng nhau ta có:\(\dfrac{a+b+c}{3+4+5}\)=\(\dfrac{24}{12}\)=2

a=2.3=6 ; b=2.4=8 ;c=2.5=10

M=ab+bc+ac=6.8+8.10+6.10=48+80+60=188

"nhưng bài còn lại làm tương tự"

19 tháng 1 2022

Trl linh tinhbucqua

19 tháng 1 2022

bớt spam lại

19 tháng 12 2020

a) Ta có: \(\left|5\cdot0.6+\dfrac{2}{3}\right|-\dfrac{1}{3}\)

\(=\left|3+\dfrac{2}{3}\right|-\dfrac{1}{3}\)

\(=3+\dfrac{2}{3}-\dfrac{1}{3}\)

\(=3+\dfrac{1}{3}=\dfrac{10}{3}\)

b) Ta có: \(\left(0.25-1\dfrac{1}{4}\right):5-\dfrac{1}{5}\cdot\left(-3\right)^2\)

\(=\left(\dfrac{1}{4}-\dfrac{5}{4}\right)\cdot\dfrac{1}{5}-\dfrac{1}{5}\cdot9\)

\(=\dfrac{-4}{4}\cdot\dfrac{1}{5}-\dfrac{1}{5}\cdot9\)

\(=\dfrac{1}{5}\cdot\left(-1-9\right)\)

\(=-10\cdot\dfrac{1}{5}=-2\)

c) Ta có: \(\dfrac{14}{17}\cdot\dfrac{7}{5}-\dfrac{-3}{17}:\dfrac{5}{7}\)

\(=\dfrac{14}{17}\cdot\dfrac{7}{5}-\dfrac{-3}{17}\cdot\dfrac{7}{5}\)

\(=\dfrac{7}{5}\cdot\left(\dfrac{14}{17}+\dfrac{3}{17}\right)\)

\(=\dfrac{7}{5}\cdot1=\dfrac{7}{5}\)

d) Ta có: \(\dfrac{7}{16}+\dfrac{-9}{25}+\dfrac{9}{16}+\dfrac{-16}{25}\)

\(=\left(\dfrac{7}{16}+\dfrac{9}{16}\right)-\left(\dfrac{9}{25}+\dfrac{16}{25}\right)\)

\(=\dfrac{16}{16}-\dfrac{25}{25}\)

\(=1-1=0\)

e) Ta có: \(\dfrac{5}{6}+2\sqrt{\dfrac{4}{9}}\)

\(=\dfrac{5}{6}+2\cdot\dfrac{2}{3}\)

\(=\dfrac{5}{6}+\dfrac{4}{3}\)

\(=\dfrac{5}{6}+\dfrac{8}{6}=\dfrac{13}{6}\)

30 tháng 1 2021

1.

 Áp dụng BĐT BSC:

\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)

Đẳng thức xảy ra khi \(a=b=c>0\)

2.

Áp dụng BĐT \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\) và BĐT BSC:

\(\dfrac{a+b}{a^2+b^2}+\dfrac{b+c}{b^2+c^2}+\dfrac{c+a}{c^2+a^2}\)

\(\le\dfrac{a+b}{\dfrac{\left(a+b\right)^2}{2}}+\dfrac{b+c}{\dfrac{\left(b+c\right)^2}{2}}+\dfrac{c+a}{\dfrac{\left(c+a\right)^2}{2}}\)

\(=\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)

\(\le2.\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}+\dfrac{1}{a}\right)\)

\(=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

Đẳng thức xảy ra khi \(a=b=c>0\)

30 tháng 1 2021

Cách khác:

1.

 Áp dụng BĐT Cauchy:

\(\dfrac{a^2}{b+c}+\dfrac{b+c}{4}+\dfrac{b^2}{c+a}+\dfrac{c+a}{4}+\dfrac{c^2}{a+b}+\dfrac{a+b}{4}\ge a+b+c\)

\(\Leftrightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge a+b+c-\dfrac{a+b+c}{2}=\dfrac{a+b+c}{2}\)

Đẳng thức xảy ra khi \(a=b=c>0\)

NV
27 tháng 12 2022

1.

Áp dụng BĐT Cauchy-Schwarz:

\(\dfrac{a}{2a+a+b+c}=\dfrac{a}{25}.\dfrac{\left(2+3\right)^2}{2a+a+b+c}\le\dfrac{a}{25}\left(\dfrac{2^2}{2a}+\dfrac{3^2}{a+b+c}\right)=\dfrac{2}{25}+\dfrac{9}{25}.\dfrac{a}{a+b+c}\)

Tương tự:

\(\dfrac{b}{3b+a+c}\le\dfrac{2}{25}+\dfrac{9}{25}.\dfrac{b}{a+b+c}\)

\(\dfrac{c}{a+b+3c}\le\dfrac{2}{25}+\dfrac{9}{25}.\dfrac{c}{a+b+c}\)

Cộng vế:

\(VT\le\dfrac{6}{25}+\dfrac{9}{25}.\dfrac{a+b+c}{a+b+c}=\dfrac{3}{5}\)

Dấu "=" xảy ra khi \(a=b=c\)

NV
27 tháng 12 2022

2.

Đặt \(\dfrac{x}{x-1}=a;\dfrac{y}{y-1}=b;\dfrac{z}{z-1}=c\)

Ta có: \(\dfrac{x}{x-1}=a\Rightarrow x=ax-a\Rightarrow a=x\left(a-1\right)\Rightarrow x=\dfrac{a}{a-1}\)

Tương tự ta có: \(y=\dfrac{b}{b-1}\) ; \(z=\dfrac{c}{c-1}\)

Biến đổi giả thiết:

\(xyz=1\Rightarrow\dfrac{abc}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}=1\)

\(\Rightarrow abc=\left(a-1\right)\left(b-1\right)\left(c-1\right)\)

\(\Rightarrow ab+bc+ca=a+b+c-1\)

BĐT cần chứng minh trở thành:

\(a^2+b^2+c^2\ge1\)

\(\Leftrightarrow\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\ge1\)

\(\Leftrightarrow\left(a+b+c\right)^2-2\left(a+b+c-1\right)\ge1\)

\(\Leftrightarrow\left(a+b+c-1\right)^2\ge0\) (luôn đúng)