Chứng minh rằng các biểu thức sau có giá trị dương với mọi giá trị của x.
x2-6x+10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(x^2-5x+10\)
\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}\)
\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{15}{4}>0\forall x\)
b: \(2x^2+8x+15\)
\(=2\left(x^2+4x+\dfrac{15}{2}\right)\)
\(=2\left(x^2+4x+4+\dfrac{7}{2}\right)\)
\(=2\left(x+2\right)^2+7>0\forall x\)
B = \(x^2\) - 2\(xy\) + 2y\(^2\) + 2\(x\) - 10y + 17
B = (\(x^2\) - 2\(xy\) + y2) + 2(\(x-y\)) + 1 + (y2 - 8y + 16)
B = (\(x-y\))2 + 2(\(x-y\)) + 1 + (y - 4)2
B = (\(x-y\) + 1)2 + (y - 4)2
(\(x-y+1\))2 ≥ 0 ∀ \(x;y\); (y - 4)2 ≥ 0
B ≥ 0
Kết luận biểu thức không âm. Chứ không phải là biểu thức luôn dương em nhé. Vì dương thì biểu thức phải > 0 ∀ \(x;y\). Mà số 0 không phải là số dương.
x(5x – 3) – x 2 (x – 1) + x( x 2 – 6x) – 10 + 3x
= x.5x + x.(- 3) – [ x 2 .x + x 2 .(-1)] + x. x 2 +x. (-6x) – 10 + 3x
= 5 x 2 – 3x – x 3 + x 2 + x 3 – 6 x 2 – 10 + 3x
= ( x 3 – x 3 ) + ( 5 x 2 + x 2 – 6 x 2 ) – (3x - 3x ) - 10
= - 10
Vậy biểu thức không phụ thuộc vào biến x.
`B = x^2- 2xy + y^2 + 2x - 10y + 17
`2B = 2x^2 - 4xy + 2y^2 + 4x - 20y + 34`
`= (x-y)^2 + (x+2)^2 + (y-5)^2 + 5 >= 5`.
Ta có :
\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)
Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x
Chúc bạn học tốt ~
\(E=2x^2+y^2-2xy-6x+12=\left(x-y\right)^2+\left(x-3\right)^2+3\ge3>0\)
Ta có : \(x^2-6x+10=\left(x^2-2.3.x+9\right)+1=\left(x-3\right)^2+1>0,\forall x\left(đpcm\right)\)
\(x^2-6x+10\\ =x^2-2x\times3+3^2+1\\ =\left(x-3\right)^2+1\)
có (x-3)2 \(\ge0\) nên \(\left(x-3\right)^2+1\ge1\)
vậy x2-6x+10 luôn dương với mọi x