Rút gọn:
(a+b+c)2+2(a+b+c)(b+c) + (b+c)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
(a+b+c)2+(b+c-a)2+(c+a-b)2+(a+b-c)2= [(a+b)+c]2+[(b-a)+c]2+[(a-b)+c]2+[(a+b)-c]
=(a+b)2+2c(a+b)+c2+(b-a)2+2c(b-a)+c2+(a-b)2+2c(a-b)+c2+(a+b)2-2c(a+b)+c2
=2(a+b)2+2(a-b)2+4c2( vì (a-b)2=(b-a)2)
a) (a+b)3+(a-b)3=a3+3a2b+3ab2+b3+a3-3a2b+3ab2-b3
=2a3+6ab2
b) (a + b + c)2 + (a − b − c)2 + (b − c − a)2 + (c − a − b)2
=a2+b2+c2+2ab+2bc+2ca+a2+b2+c2-2ab+2bc-2ac+a2+b2+c2-2bc+2ca-2ba+a2+b2+c2-2ca+2ab-2cb
=4a2+4b2+4c2
a) Ta có: \(\left(a+b\right)^3+\left(a-b\right)^3\)
\(=\left(a+b+a-b\right)\left[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(=2a\cdot\left(a^2+2ab+b^2-a^2+b^2+a^2-2ab+b^2\right)\)
\(=2a\cdot\left(a^2+3b^2\right)\)
\(=2a^3+6ab^2\)
a)(a+b+c)2-(a+b)2-(a+c)2-(b+c)2
=a2+b2+c2+2ab+2bc+2ca-a2-2ab-b2-a2-2ac-c2-b2-2bc-c2
=-a2-b2-c2
=-(a2+b2+c2)
b)(a+b+c)2-(a-b+c)2+(a+b-c)2+(-a+b+c)2
=a2+2ab+b2+2bc+c2+2ac-a2-b2-c2+2ab+2bc-2ac+a2+b2+c2+2ab-2bc-2ac+a2+b2+c2-2ab-2ac+2bc
=2a2+2b2+2c2+4ab-4bc-4ac
\(\left(a+b+c\right)^2+2\left(a+b+c\right)\left(b+c\right)+\left(b+c\right)^2\\ =\left(a+b+c+b+c\right)^2\\ =\left(a+2b+2c\right)^2\)