K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2017

\(B=\dfrac{9}{10!}+\dfrac{10}{11!}+...........+\dfrac{99}{100!}\)

Ta thấy :

\(\dfrac{9}{10!}=\dfrac{10-1}{10!}=\dfrac{1}{9!}-\dfrac{1}{10!}\)

\(\dfrac{10}{11!}< \dfrac{11-1}{11!}=\dfrac{1}{10!}-\dfrac{1}{11!}\)

..........................

\(\dfrac{99}{100!}< \dfrac{100-1}{100!}=\dfrac{1}{99!}-\dfrac{1}{100!}\)

\(\Leftrightarrow B< \dfrac{1}{9!}-\dfrac{1}{10!}+\dfrac{1}{10!}-\dfrac{1}{11!}+...........+\dfrac{1}{99!}-\dfrac{1}{100!}\)

\(\Leftrightarrow B< \dfrac{1}{9!}-\dfrac{1}{100!}\)

\(\Leftrightarrow B< \dfrac{1}{9!}\rightarrowđpcm\)

18 tháng 7 2017

ban hang lam sai dau cho ta thay hay sao y

23 tháng 6 2018

a, Ta có :

\(M=\dfrac{1}{1\cdot2}+\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{1\cdot2\cdot3\cdot4}+...+\dfrac{1}{1\cdot2\cdot3\cdot...\cdot100}\\ < \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-...+\dfrac{1}{99}-\dfrac{1}{100}\\ =1-\dfrac{1}{100}=\dfrac{99}{100}< 1\\ \Rightarrow M< 1\\ \RightarrowĐpcm\)

23 tháng 4 2017

a) Đặt :

\(A=\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+.................+\dfrac{1}{100!}\)

Ta thấy :

\(\dfrac{1}{2!}=\dfrac{1}{1.2}\)

\(\dfrac{1}{3!}=\dfrac{1}{1.2.3}\)

\(\dfrac{1}{4!}=\dfrac{1}{1.2.3.4}< \dfrac{1}{3.4}\)

.....................................

\(\dfrac{1}{100!}=\dfrac{1}{1.2.3..........100}< \dfrac{1}{99.100}\)

\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...........+\dfrac{1}{99.100}\)

\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...........+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A< 1-\dfrac{1}{100}\)

\(A< \dfrac{99}{100}< 1\)

\(\Rightarrow A< 1\rightarrowđpcm\)

b) Đặt :

\(B=\dfrac{9}{10!}+\dfrac{9}{11!}+\dfrac{9}{12!}+.............+\dfrac{9}{1000!}\)

Ta thấy :

\(\dfrac{9}{10!}=\dfrac{10-1}{10!}=\dfrac{1}{9!}-\dfrac{1}{10!}\)

\(\dfrac{9}{11!}< \dfrac{11-1}{11!}=\dfrac{1}{10!}-\dfrac{1}{11!}\)

...................................................

\(\dfrac{9}{1000!}< \dfrac{1000-1}{1000!}=\dfrac{1}{999!}-\dfrac{1}{1000!}\)

\(\Rightarrow B< \dfrac{1}{9!}-\dfrac{1}{10!}+\dfrac{1}{10!}-\dfrac{1}{11!}+............+\dfrac{1}{999!}-\dfrac{1}{1000!}\)

\(B< \dfrac{1}{9!}-\dfrac{1}{1000!}\)

\(\Rightarrow B< \dfrac{1}{9!}\rightarrowđpcm\)

~ Chúc bn học tốt ~

17 tháng 10 2018

Rút gọn biểu thức chứa căn bậc hai

11 tháng 5 2023

\(A=\dfrac{4}{3}+\dfrac{10}{9}+\dfrac{28}{27}+....+\dfrac{\left(3^{99}+1\right)}{3^{99}}\)

\(A=\dfrac{4}{3}+\dfrac{10}{3^2}+\dfrac{28}{3^3}+...+\dfrac{\left(3^{99}+1\right)}{3^{99}}\)

\(A=\left(1+\dfrac{1}{3}\right)+\left(1+\dfrac{1}{3^2}\right)+\left(1+\dfrac{1}{3^3}\right)+...+\left(1+\dfrac{1}{3^{99}}\right)\)

\(A=\left(1+1+....+1\right)+\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)\)

\(A=99+\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)\)

Gọi \(\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)\)là T

\(T=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)\)

\(3T=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}\)

\(3T-T=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)\)

\(2T=1-\dfrac{1}{3^{99}}\)

\(T=\left(1-\dfrac{1}{3^{99}}\right):2\)

\(T=\dfrac{1}{2}-\dfrac{1}{3^{99}\cdot2}\)

\(=>A=99+T=99+\dfrac{1}{2}-\dfrac{1}{3^{99}\cdot2}=99,5-\dfrac{1}{3^{99}\cdot2}< 100\)

Vậy A < 100

12 tháng 5 2023

cảm ơn bn

Cái này mk từng làm nhưng có chút sai sót vậy nên bn sữa cho mk chút nhé ! Thay vì N = ... thì bn thay bằng A = ... nha

Ta có :

N = 40 ( A = 40 )

31 tháng 3 2018

Tình bạn ư ? Tôi khinh !!! Nhìn hack não qá bn?!?!!limdim