Chứng tỏ rằng :
a) 109 + 108 + 107 chia hết cho 555
b) 817 - 279 - 913 chia hết cho 45
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d; 109 + 108 + 107 ⋮ 555
109 + 108 + 107
= 217 + 107
= 324 < 555
109 + 108 + 107 < 555 (không thể chia hết cho 555)
e; 817 - 279 - 913 ⋮ 45
817 - 279 -913
= 538 - 913
= - 375
3 + 7 + 5 = 15 không chia hết cho 9 n ên 375 không chia hết cho 45
81^7 - 27^9 - 9^13
= (3^4)^7 - (3^3)^9 - (3^2)^13
= 3^28 - 3^27 - 3^26
= (3^26.3^2) - (3^26.3^1) - (3^26.1)
= 3^26.(9 - 3 - 1)
= 3^22.(3^4.5)
= 3^22.405 chia hết cho 405
=> 81^7 - 27^9-9^13 chia hết cho 405
1; 87 - 218 ⋮ 14
A = 87 - 218
A = - 131 (là số lẻ); 14 là số chẵn
Số lẻ không bao giờ chi hết cho số chẵn
2; 76 + 75 - 913 ⋮ 55
B = 76 + 75 - 913
B = 151 - 913
B = - 762 không chia hết cho 5 nên không chia hết cho 55
a) \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4\left(49+7-1\right)=7^4.55⋮55\)
b) \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\left(32+1\right)=2^{15}.33⋮33\)
c) \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}.5=3^{22}.3^4.5=3^{22}.405⋮405\)
a: \(=7^4\left(7^2+7-1\right)=7^4\cdot55⋮55\)
b: \(=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\cdot33⋮33\)
c: \(=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}\cdot5=3^{22}\cdot405⋮405\)
a, 810 - 89 - 88 = 88(82 - 8 - 1) = 88.55 chia hết cho 55
b, 76 + 75 - 74 = 74(72 + 7 - 1) = 74.55 = 74.5.11 chia hết cho 11
c, 817 - 279 - 913 = 328 - 327 - 326 = 324(34 - 33 - 32) = 324.45 chia hết cho 45
d, 109 + 108 + 107 = 106(103 + 102 + 10) = 106.1110 = 106.2.555 chia hết cho 555
Đề sai rồi cậu ơi ! Không chứng minh được.
Thế này nhé : Cậu xét số số hạng ủa S được 109 số
Xét 255 bằng 8 số hạng đầu tiên cộng lại ( Từ 2^0 đến 2^7). Nhưng 109 lại không chia hết cho 8 ( nếu chia ra thì dư 5) Nếu như đã dư thì chứng tỏ là sẽ không thể nhóm được thành từng nhóm số chia hết cho 255. Vì thế nên bài này không chia hết được cũng như là đề hơi sai sót :3 Cậu xem lại nhé
Gọi số tự nhiên có 3 chữ số cần tìm có dạng là \(X=\overline{abc}\)
X chia hết cho 5 nên c=5 hoặc c=0
TH1: c=5
a có 9 cách chọn
b có 10 cách chọn
Do đó: Có 9*10=90 số có có 3 chữ số có chữ số 5 ở tận cùng mà vẫn chứa số 5 chia hết cho 5(1)
TH2: c=0
Muốn X có chứa chữ số 5 thì một trong hai số a,b phải là số 5
Nếu a=5 thì b có 10 cách chọn
=>Có 10 cách
Nếu b=5 thì a có 9 cách chọn
=>Có 9 cách
=>Có 10*9=19 số có 3 chữ số có tận cùng là 0 nhưng vẫn chứa số 5(2)
Từ (1),(2) suy ra số lượng số tự nhiên thỏa mãn vừa là số có 3 chữ số, vừa chứa số 5 vừa chia hết cho 5 là:
90+19=109 số
=>Chọn D