Chứng minh rằng:
A;(n+10).(n+15)chia hết cho 2
B;817-279-913chia hết cho45
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`sqrta+1>sqrt{a+1}`
`<=>a+2sqrta+1>a+1`
`<=>2sqrta>0`
`<=>sqrta>0AAa>0`
`sqrt{a-1}<sqrta`
`<=>a-1<a`
`<=>-1<0` luôn đúng
`sqrt6-1>sqrt3-sqrt2`
`<=>sqrt6-sqrt3+sqrt2-1>0`
`<=>sqrt3(sqrt2-1)+sqrt2-1>0`
`<=>(sqrt2-1)(sqrt3+1)>0` luôn đúng
a: Xét ΔABD và ΔACE có
\(\widehat{A}\) chung
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
Do đó: ΔABD=ΔACE
Suy ra: \(\widehat{EBD}=\widehat{ECD}\)
b: Xét ΔADE có AD=AE
nên ΔADE cân tại A
c: Xét ΔABC có
BD là đường phân giác
nên AD/DC=AB/BC=AC/BC(1)
Xét ΔABC có
CE là đường phân giác
nên AE/EB=AC/BC(2)
Từ (1) và (2) suy ra AE/EB=AD/DC
hay DE//BC
d: Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)
nên ΔOBC cân tại O
a: Xét tứ giác BHCD có
BH//CD
CH//BD
Do đó: BHCD là hình bình hành
a: Xét ΔCIA và ΔCIM có
CI chung
IA=IM
CA=CM
Do đó: ΔCIA=ΔCIM
\(A=\left(n+10\right)\left(n+15\right)\)
\(A=n^2+15n+10n+150\)
\(A=n^2+25n+150\)
Xét: 150 là 1 số chẵn.
Xét: Nếu n chẵn:
\(n^2;25n\) luôn chẵn
\(\Rightarrow n^2+25n+150\)= chẵn+chẵn+chẵn=chẵn \(⋮2\)
Xét: Nếu n lẻ:
\(\Rightarrow n^2;25n\) luôn lẻ
\(\Rightarrow n^2+25+150\)= lẻ+lẻ+chẵn=chẵn \(⋮2\)
\(\rightarrow A⋮2\rightarrowđpcm\)
\(B=81^7-27^9-9^{13}\)
\(B=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(B=3^{28}-3^{27}-3^{26}\)
\(B=3^2.3^{26}-3.3^{26}-3^{26}\)
\(B=3^{26}\left(3^2-3-1\right)\)
\(B=3^{26}.5⋮5\)
\(B=\left(3^2\right)^{13}.5\)
\(B=9^{13}.5⋮9\)
\(B⋮5;9\Rightarrow B⋮45\rightarrowđpcm\)