Cho tam giác ABC cân ở A, 3 đường cao AD, BE, CF. Đường thẳng qua B song song với CF cắt AC tại H. Chứng minh
a, AC2=AE.AH
b, \(\dfrac{1}{CF^2}=\dfrac{1}{BC^2}+\dfrac{4}{AD^2}\)Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cô hướng dẫn nhé.
a) Do ABC là tam giác cân nên AE = AF, AC = AB
Lại có \(\Delta AFC\sim\Delta ABH\left(g-g\right)\Rightarrow\frac{AF}{AB}=\frac{AC}{AH}\Rightarrow AF.AH=AB.AC\Rightarrow AE.AH=AC^2\)
b) Câu này đề ko đúng. Cô sửa lại \(\frac{1}{CF^2}=\frac{1}{BC^2}+\frac{1}{4.AD^2}\)
\(AD.BC=AB.CF\left(=\frac{S_{ABC}}{2}\right)\)
Vậy nên \(VP=\frac{AD^2+\frac{BC^2}{4}}{BC^2.AD^2}=\frac{AD^2+\left(\frac{BC}{2}\right)^2}{CF^2AB^2}=\frac{AD^2+BD^2}{CF^2AB^2}=\frac{AB^2}{CF^2.AB^2}=\frac{1}{CF^2}=VT\)
Vì tam giác ABC cân tại A có đường cao AH nên D là trung điểm BC
Từ C kẻ đường thẳng vuông góc với BC cắt AB tại G
\(\Rightarrow CG\parallel AD\) mà D là trung điểm BC \(\Rightarrow A\) là trung điểm BG
nên AD là đường trung bình tam giác BCG \(\Rightarrow AD=\dfrac{CG}{2}\)
\(\Rightarrow2AD=CG\Rightarrow4AD^2=CG^2\)
tam giác BCG vuông tại C có đường cao CF nên áp dụng hệ thức lượng
\(\Rightarrow\dfrac{1}{BC^2}+\dfrac{1}{CG^2}=\dfrac{1}{CF^2}\Rightarrow\dfrac{1}{BC^2}+\dfrac{1}{4AD^2}=\dfrac{1}{CF^2}\)
a, Ta có: \(BH//CF\left(gt\right)\)
\(CF\perp AB\left(gt\right)\)
\(\Rightarrow BH\perp AB\)
\(\Delta ABH\)có: \(\widehat{ABH}=90^o,BH\perp AB\)
\(\Rightarrow AB^2=AE.AH\)(hệ thức lượng trong tam giác vuông)
\(AB=AC\left(gt\right)\)
\(\Rightarrow AC^2=AH.AE\)
Câu b chiều mình làm nhé
b, Kẻ \(DG\perp AB\)
Ta có: \(DG\perp AB\left(cd\right)\)
\(FC\perp AB\left(gt\right)\)
\(\Rightarrow DG//FC\)
\(\Delta ABC\)cân tại A có: AD là đường cao của \(\Delta ABC\)\(\Rightarrow\)AD là đường trung tuyến của \(\Delta ABC\)\(\Rightarrow BD=DC\)
\(\Delta BEC\)có: \(DG//FC\left(cmt\right)\)
\(BD=DC\left(cmt\right)\)
\(\Rightarrow GF=FB\)
\(\Delta BFC\)có: \(GF=FB\left(cmt\right)\)
\(BD=DC\left(cmt\right)\)
\(\Rightarrow\)\(\hept{\begin{cases}DG//FC\\DG=\frac{1}{2}FC\end{cases}}\)
\(\Delta ADB\)có: \(\widehat{ADB}=90^o,DG\perp AB\)
\(\Rightarrow\frac{1}{DG^2}=\frac{1}{AD^2}+\frac{1}{DB^2}\)(hệ thức về cạnh và đường cao trong tam giác vuông)
mà \(DG=\frac{1}{2}FC\left(cmt\right)\)
\(\Rightarrow\frac{4}{FC^2}=\frac{1}{AD^2}+\frac{1}{DB^2}\)
mà \(BD=\frac{1}{2}BC\left(cmt\right)\)
\(\Rightarrow\frac{4}{FC^2}=\frac{1}{AD^2}+\frac{4}{BC^2}\)\(\Leftrightarrow\frac{1}{FC^2}=\frac{1}{4AD^2}+\frac{1}{BC^2}\)
Gọi diện tích các hình tam giác ABC, MAB, MAC, MBC lần lượt là S, S 1 , S 2 , S 3 . Ta có:
S = S 1 + S 2 + S 3
Trong đó: S = 1/2 AD.BC = 1/2 BE. AC = 1/2 CF. AB
S 1 = 1/2 MT. AB
S 2 = 1/2 MK. AC
S 3 = 1/2 MH. BC