Rút gọn BT với \(x>0;x\ne8\)
\(P=\dfrac{8-x}{2+\sqrt[3]{x}}:\left(2+\dfrac{\sqrt[3]{x^2}}{2+\sqrt[3]{x}}\right)+\left(\sqrt[3]{x}+\dfrac{2\sqrt[3]{x}}{\sqrt[3]{x}-2}\right)\left(\dfrac{\sqrt[3]{x^2}-1}{\sqrt[3]{x^2}+2\sqrt[3]{x}}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{y-x}\cdot\sqrt{x^6\left(x-y\right)^2}\)
\(\dfrac{1}{y-x}\cdot x^3\cdot\left(x-y\right)\)
\(=-x^3\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a) ta thấy x-4=(canx-2)(cãnx+2)
2-canx=-(cãnx - 2)
tự học mới giỏi
b)rut gọn roi giai cho
1) \(A=\dfrac{\left(\sqrt{x}+1\right)^2+\left(\sqrt{x}-1\right)^2-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2x-3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\left(2x-2\sqrt{x}\right)-\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)
b) \(A=\dfrac{2\sqrt{9}-1}{\sqrt{9}+1}=\dfrac{5}{4}\)
c) \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}< 1\Rightarrow2\sqrt{x}-1< \sqrt{x}+1\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\)
\(1,A=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ A=\dfrac{2x-3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\\ 2,x=9\Leftrightarrow A=\dfrac{6-1}{3+1}=\dfrac{5}{4}\\ 3,A< 1\Leftrightarrow\dfrac{2\sqrt{x}-1-\sqrt{x}-1}{\sqrt{x}+1}< 0\\ \Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\Leftrightarrow\sqrt{x}-2< 0\left(\sqrt{x}+1>0\right)\\ \Leftrightarrow x< 4\Leftrightarrow0\le x< 4\)
\(x^{n-2}\left(x^2-1\right)-x\left(x^{n-1}-x^{n-3}\right)\)
\(=x-x^{n-2}-x+x^{n-2}\)
\(=0\)
\(A=\frac{y}{x}\cdot\sqrt{\frac{x^2}{y^4}}=\frac{y}{x}\cdot\frac{\sqrt{x^2}}{\sqrt{y^4}}=\frac{y}{x}\cdot\frac{\left|x\right|}{\left|y^2\right|}=\frac{y}{x}\cdot\frac{x}{y^2}=\frac{1}{y}\)( x > 0 ; y > 0 )
\(D=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)}=\sqrt{x}+\sqrt{y}\)