K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
22 tháng 8 2021

Điều kiện : \(\hept{\begin{cases}1-x\ge0\\x+1\ge0\end{cases}\Leftrightarrow x\in\left[-1,1\right]}\)

Đặt : \(a=\sqrt{1-x}+\sqrt{x+1}\Rightarrow a^2=2+2\sqrt{1-x^2}\)

vậy ta có :\(a+a^2-2=4\Leftrightarrow a^2+a-6=0\Leftrightarrow\orbr{\begin{cases}a=2\\a=-3\end{cases}}\)

mà hiển nhiên a nhận giá trị dương nên : \(a=2\Rightarrow a^2=4=2+2\sqrt{1-x^2}\Leftrightarrow\sqrt{1-x^2}=1\Leftrightarrow x=0\)

22 tháng 8 2021

\(ĐK:-1\le x\le1\)

áp dụng bunhiakopxki ta có : 

\(\left(\sqrt{1-x}+\sqrt{x+1}\right)^2\le\left(1+1\right)\left(1-x+x+1\right)\)

\(\Leftrightarrow\left(\sqrt{1-x}+\sqrt{x+1}\right)^2\le4\)

\(\Leftrightarrow\sqrt{1-x}+\sqrt{x+1}\le2\)

có \(-x^2\le0\Leftrightarrow1-x^2\le1\Leftrightarrow2\sqrt{1-x^2}\le2\)

\(\Rightarrow VT\le4\) 

dấu = xảy ra khi \(\frac{\sqrt{1-x}}{1}=\frac{\sqrt{x+1}}{1}\) và \(x^2=0\)

\(\Leftrightarrow x=0\left(tm\right)\)

NV
13 tháng 11 2018

ĐKXĐ: \(x\ge1;x\le-3;x=-1\)

\(\sqrt{2\left(x+1\right)\left(x+3\right)}-\sqrt{\left(x-1\right)\left(x+1\right)}=2\left(x+1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=0\left(1\right)\\\sqrt{2\left(x+3\right)}-\sqrt{x-1}=2\sqrt{x+1}\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x+1=0\Rightarrow x=-1\)

\(\left(2\right)\Leftrightarrow\sqrt{2x+6}=\sqrt{x-1}+2\sqrt{x+1}\)

\(\Leftrightarrow2x+6=x-1+4\sqrt{\left(x-1\right)\left(x+1\right)}+4x+4\)

\(\Leftrightarrow4\sqrt{x^2-1}=3-3x\) \(\Leftrightarrow\left\{{}\begin{matrix}3-3x\ge0\\16\left(x^2-1\right)=\left(3-3x\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\7x^2+18x-25=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-25}{7}\end{matrix}\right.\)

Vậy pt có 3 nghiệm: \(x=-1;1;\dfrac{-25}{7}\)

14 tháng 11 2018

thank

15 tháng 9 2018

ĐK:x\(\ge2\)\(\sqrt{x-1+2\sqrt{x-2}}-\sqrt{x-1-2\sqrt{x-2}}=1\Leftrightarrow\sqrt{x-2+2\sqrt{x-2}+1}-\sqrt{x-2-2\sqrt{x}-2+1}=1\Leftrightarrow\sqrt{\left(\sqrt{x-2}+1\right)^2}-\sqrt{\left(\sqrt{x-2}-1\right)^2}=1\Leftrightarrow\left|\sqrt{x-2}+1\right|-\left|\sqrt{x-2}-1\right|=1\Leftrightarrow\sqrt{x-2}+1-\left|\sqrt{x-2}-1\right|=1\)(1)

TH1: nếu \(\sqrt{x-2}< 1\Leftrightarrow x-2< 1\Leftrightarrow x< 3\) và x>2 thì

(1)⇔\(\sqrt{x-2}+1-1+\sqrt{x-2}=1\Leftrightarrow2\sqrt{x-2}=1\Leftrightarrow\sqrt{x-2}=\dfrac{1}{2}\Leftrightarrow x-2=\dfrac{1}{4}\Leftrightarrow x=\dfrac{9}{4}\left(tm\right)\)TH2: nếu \(\sqrt{x-2}\ge1\Leftrightarrow x\ge3\) thì

(1)\(\Leftrightarrow\sqrt{x-2}+1-\sqrt{x-2}+1=1\Leftrightarrow2=1\left(ktm\right)\)

Vậy S={\(\dfrac{9}{4}\)}

18 tháng 11 2018

Đặt \(\sqrt[3]{x+2}=a;\sqrt[3]{3x+2}=2\)

Ta có: \(\left\{{}\begin{matrix}a-b=2\\3a^3-b^3=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+2\left(1\right)\\3a^3-b^3=4\end{matrix}\right.\)

Thay (1) vào (2) ta có:

3(b + 2)3 - b3 = 4

<=> 3(b3 + 6b2 + 12b + 8) - b3 = 4

<=> 2b3 + 6b2 + 12b + 4 = 0

<=> b3 + 3b2 + 6b + 2 = 0

Đến đây chắc phải dùng công thức nghiệm tổng quát, vô lý @@

27 tháng 11 2018

ban giai sai roi, bài này ra no là (\(-46-18\sqrt{6}\);\(-46+18\sqrt{6}\);-1)

15 tháng 5 2018

a) \(\sqrt{x+3}-\sqrt{x-1}=\sqrt{2x+2}\)

Điều kiện: \(\hept{\begin{cases}x+3\ge0\\x-1\ge0\\2x+2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-3\\x\ge1\\x\ge-1\end{cases}\Leftrightarrow x\ge1}\)

    \(\Leftrightarrow\left(\sqrt{x+3}-\sqrt{x-1}\right)^2=\left(\sqrt{2x+2}\right)^2\)

     \(\Leftrightarrow x+3-2\sqrt{\left(x+3\right)\left(x-1\right)}+x-1=2x+2\)

     \(\Leftrightarrow2x+2-2\sqrt{\left(x+3\right)\left(x-1\right)}=2x+2\)

     \(\Leftrightarrow-2\sqrt{\left(x+3\right)\left(x-1\right)}=0\)

     \(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)

      \(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\left(l\right)\\x=1\left(n\right)\end{cases}}\)

Vậy \(S=\left\{1\right\}\)

     

NV
12 tháng 11 2019

a/ ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{1-x}=a\ge0\\\sqrt{1+x}=b\ge0\end{matrix}\right.\) được hệ:

\(\left\{{}\begin{matrix}\sqrt{1+ab}\left(a^3-b^3\right)=2+ab\\a^2+b^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{1+ab}\left(a-b\right)\left(a^2+ab+b^2\right)=a^2+b^2+ab\\a^2+b^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{1+ab}\left(a-b\right)=1\\a^2+b^2=2\end{matrix}\right.\) \(\left(a\ge b\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(1+ab\right)\left(a-b\right)^2=1\\a^2+b^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(1+ab\right)\left(2-2ab\right)=1\\a^2+b^2=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}1-a^2b^2=\frac{1}{2}\\a^2+b^2=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a^2b^2=\frac{1}{2}\\a^2+b^2=2\end{matrix}\right.\)

Theo Viet đảo, \(a^2;b^2\) là nghiệm của:

\(t^2-2t+\frac{1}{2}=0\Rightarrow\left[{}\begin{matrix}t=\frac{2+\sqrt{2}}{2}\\t=\frac{2-\sqrt{2}}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}1-x=\frac{2+\sqrt{2}}{2}\\1-x=\frac{2-\sqrt{2}}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\frac{\sqrt{2}}{2}\\x=\frac{\sqrt{2}}{2}\end{matrix}\right.\)

NV
12 tháng 11 2019

2 phần còn lại ko biết giải theo kiểu lớp 10, chỉ biết lượng giác hóa, bạn tham khảo thôi :(

b/ Đặt \(x=cos2t\) pt trở thành:

\(\sqrt{1-cos2t}-2cos2t.\sqrt{1-cos^22t}-\left(2cos^22t-1\right)=0\)

\(\Leftrightarrow\sqrt{2}sint-2sin2t.cos2t-cos4t=0\)

\(\Leftrightarrow\sqrt{2}sint-sin4t-cos4t=0\)

\(\Leftrightarrow\sqrt{2}sint=sin4t+cos4t=\sqrt{2}sin\left(4t+\frac{\pi}{4}\right)\)

\(\Leftrightarrow sin\left(4t+\frac{\pi}{4}\right)=sint\)

\(\Leftrightarrow\left[{}\begin{matrix}4t+\frac{\pi}{4}=t+k2\pi\\4t+\frac{\pi}{4}=\pi-t+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}t=-\frac{\pi}{12}+\frac{k2\pi}{3}\\t=-\frac{\pi}{20}+\frac{k2\pi}{5}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=cos\left(-\frac{\pi}{6}+\frac{k4\pi}{3}\right)\\x=cos\left(-\frac{\pi}{10}+\frac{k4\pi}{5}\right)\end{matrix}\right.\) với \(k\in Z\)